{"title":"生物质水热转化用于碳量子点和生物燃料的联合生产。","authors":"Nilotpal Baishya, Neelam Bora, Mondita Athparia, Priyanka Padhi, Rupam Kataki","doi":"10.1007/s11356-024-35842-x","DOIUrl":null,"url":null,"abstract":"<p><p>Agro-processing industries generate a substantial quantity of biomass wastes. Conversion of these wastes into valuable material could be profitable considering both environmental and economic aspects. Among various biomass conversion methods, hydrothermal conversion can be used for co-production of biofuel and other valuable materials like carbon quantum dots (CQDs) and activated carbons. This study investigates the applicability of hydrothermal conversion in simultaneous production of biofuel and carbon quantum dots from biowastes obtained from flour mill. Water soluble CQDs of average size ranging between 4.67 and 4.88 nm were produced from various biowastes generated during wheat processing. Hydrochars obtained during the conversion exhibited calorific values between 12.95 and 25.94 MJ/kg. The influence of the composition of feedstock on hydrochar properties was also investigated. This study revealed that hydrothermal conversion technique could lead to the production of high-value materials along with the proper management of agro-industrial wastes, paving the way for a circular economy and bioeconomy. This would also help to mitigate environmental problems caused by open dumping and burning of the biowastes.</p>","PeriodicalId":545,"journal":{"name":"Environmental Science and Pollution Research","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrothermal conversion of biomass for co-production of carbon quantum dots and biofuels.\",\"authors\":\"Nilotpal Baishya, Neelam Bora, Mondita Athparia, Priyanka Padhi, Rupam Kataki\",\"doi\":\"10.1007/s11356-024-35842-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Agro-processing industries generate a substantial quantity of biomass wastes. Conversion of these wastes into valuable material could be profitable considering both environmental and economic aspects. Among various biomass conversion methods, hydrothermal conversion can be used for co-production of biofuel and other valuable materials like carbon quantum dots (CQDs) and activated carbons. This study investigates the applicability of hydrothermal conversion in simultaneous production of biofuel and carbon quantum dots from biowastes obtained from flour mill. Water soluble CQDs of average size ranging between 4.67 and 4.88 nm were produced from various biowastes generated during wheat processing. Hydrochars obtained during the conversion exhibited calorific values between 12.95 and 25.94 MJ/kg. The influence of the composition of feedstock on hydrochar properties was also investigated. This study revealed that hydrothermal conversion technique could lead to the production of high-value materials along with the proper management of agro-industrial wastes, paving the way for a circular economy and bioeconomy. This would also help to mitigate environmental problems caused by open dumping and burning of the biowastes.</p>\",\"PeriodicalId\":545,\"journal\":{\"name\":\"Environmental Science and Pollution Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Science and Pollution Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s11356-024-35842-x\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Pollution Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s11356-024-35842-x","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Hydrothermal conversion of biomass for co-production of carbon quantum dots and biofuels.
Agro-processing industries generate a substantial quantity of biomass wastes. Conversion of these wastes into valuable material could be profitable considering both environmental and economic aspects. Among various biomass conversion methods, hydrothermal conversion can be used for co-production of biofuel and other valuable materials like carbon quantum dots (CQDs) and activated carbons. This study investigates the applicability of hydrothermal conversion in simultaneous production of biofuel and carbon quantum dots from biowastes obtained from flour mill. Water soluble CQDs of average size ranging between 4.67 and 4.88 nm were produced from various biowastes generated during wheat processing. Hydrochars obtained during the conversion exhibited calorific values between 12.95 and 25.94 MJ/kg. The influence of the composition of feedstock on hydrochar properties was also investigated. This study revealed that hydrothermal conversion technique could lead to the production of high-value materials along with the proper management of agro-industrial wastes, paving the way for a circular economy and bioeconomy. This would also help to mitigate environmental problems caused by open dumping and burning of the biowastes.
期刊介绍:
Environmental Science and Pollution Research (ESPR) serves the international community in all areas of Environmental Science and related subjects with emphasis on chemical compounds. This includes:
- Terrestrial Biology and Ecology
- Aquatic Biology and Ecology
- Atmospheric Chemistry
- Environmental Microbiology/Biobased Energy Sources
- Phytoremediation and Ecosystem Restoration
- Environmental Analyses and Monitoring
- Assessment of Risks and Interactions of Pollutants in the Environment
- Conservation Biology and Sustainable Agriculture
- Impact of Chemicals/Pollutants on Human and Animal Health
It reports from a broad interdisciplinary outlook.