双功能Pd-Pt负载纳米颗粒用于生物质衍生化合物的轻度加氢脱氧和氧化。

IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2025-01-02 DOI:10.1002/cssc.202402641
Vincenzo Ruta, Luis A Cipriano, Giovanni Di Liberto, Robert Wojcieszak, Gianvito Vilé
{"title":"双功能Pd-Pt负载纳米颗粒用于生物质衍生化合物的轻度加氢脱氧和氧化。","authors":"Vincenzo Ruta, Luis A Cipriano, Giovanni Di Liberto, Robert Wojcieszak, Gianvito Vilé","doi":"10.1002/cssc.202402641","DOIUrl":null,"url":null,"abstract":"<p><p>The conversion of bio-based molecules into valuable chemicals is essential for advancing sustainable processes and addressing global resource challenges. However, conventional catalytic methods often demand harsh conditions and suffer from low product selectivity. This study introduces a series of bifunctional Pd<sub>x</sub>Pt<sub>y</sub> catalysts supported on TiO<sub>2</sub>, designed for achieving selective and mild-temperature catalysis in biomass conversion. Synthesized via a sol immobilization method and characterized by XRF, N<sub>2</sub> physisorption, HRTEM, HAADF-STEM, and XPS, these catalysts demonstrate superior selectivity and activity over monometallic counterparts. In fact, at 20 bar H<sub>2</sub>, Pt/TiO<sub>2</sub> show a low selectivity in benzophenone hydrodeoxygenation, favoring the benzhydrol hydrogenation product; similarly, Pd/TiO<sub>2</sub> preferentially form the diphenylmethane hydrodeoxygenation (HDO) product, but with slow conversion rates. The synergistic combination of the two metals in Pd<sub>4</sub>Pt<sub>1</sub>/TiO<sub>2</sub> drastically improve performance, with 100 % benzophenone conversion and 73 % diphenylmethane selectivity. DFT calculations confirm the synergy between Pd and Pt as the key to drive the activity and selectivity. Additionally, the catalysts also demonstrate high recyclability with minimal performance loss, and have been generalized for the HDO of vanillin and furfural, and in HMF oxidation. Overall, this work highlights the potential of bimetallic catalysts in enabling efficient and selective bio-based molecule conversion under mild conditions.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202402641"},"PeriodicalIF":7.5000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bifunctional Pd-Pt Supported Nanoparticles for the Mild Hydrodeoxygenation and Oxidation of Biomass-Derived Compounds.\",\"authors\":\"Vincenzo Ruta, Luis A Cipriano, Giovanni Di Liberto, Robert Wojcieszak, Gianvito Vilé\",\"doi\":\"10.1002/cssc.202402641\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The conversion of bio-based molecules into valuable chemicals is essential for advancing sustainable processes and addressing global resource challenges. However, conventional catalytic methods often demand harsh conditions and suffer from low product selectivity. This study introduces a series of bifunctional Pd<sub>x</sub>Pt<sub>y</sub> catalysts supported on TiO<sub>2</sub>, designed for achieving selective and mild-temperature catalysis in biomass conversion. Synthesized via a sol immobilization method and characterized by XRF, N<sub>2</sub> physisorption, HRTEM, HAADF-STEM, and XPS, these catalysts demonstrate superior selectivity and activity over monometallic counterparts. In fact, at 20 bar H<sub>2</sub>, Pt/TiO<sub>2</sub> show a low selectivity in benzophenone hydrodeoxygenation, favoring the benzhydrol hydrogenation product; similarly, Pd/TiO<sub>2</sub> preferentially form the diphenylmethane hydrodeoxygenation (HDO) product, but with slow conversion rates. The synergistic combination of the two metals in Pd<sub>4</sub>Pt<sub>1</sub>/TiO<sub>2</sub> drastically improve performance, with 100 % benzophenone conversion and 73 % diphenylmethane selectivity. DFT calculations confirm the synergy between Pd and Pt as the key to drive the activity and selectivity. Additionally, the catalysts also demonstrate high recyclability with minimal performance loss, and have been generalized for the HDO of vanillin and furfural, and in HMF oxidation. Overall, this work highlights the potential of bimetallic catalysts in enabling efficient and selective bio-based molecule conversion under mild conditions.</p>\",\"PeriodicalId\":149,\"journal\":{\"name\":\"ChemSusChem\",\"volume\":\" \",\"pages\":\"e202402641\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemSusChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cssc.202402641\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202402641","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

将生物基分子转化为有价值的化学品对于推进可持续工艺和应对全球资源挑战至关重要。然而,传统的催化方法往往需要苛刻的条件,而且产品选择性低。本研究介绍了一系列以 TiO2 为载体的双功能 PdxPty 催化剂,旨在实现生物质转化过程中的选择性和低温催化。这些催化剂是通过溶胶固定法合成的,并通过 XRF、N2 物理吸附、HRTEM、HAADF-STEM 和 XPS 进行表征。在 20 bar H2 条件下,Pt/TiO2 在二苯甲酮加氢脱氧反应中的选择性较差,更倾向于加氢产物苯海醇的形成;事实上,Pd/TiO2 更倾向于生成 HDO 产物二苯基甲烷,但转化率较慢。然而,Pd4Pt1/TiO2 中两种金属的协同组合大大提高了性能,二苯甲酮转化率达到 100%,二苯甲烷选择性达到 73%。DFT 计算证实了双金属体系在推动选择性方面的作用。此外,催化剂还具有很高的可回收性,性能损失极小,对香兰素和糠醛的 HDO 以及 HMF 氧化有效。总之,这项工作凸显了双金属催化剂在更温和、更高效的生物基分子转化方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bifunctional Pd-Pt Supported Nanoparticles for the Mild Hydrodeoxygenation and Oxidation of Biomass-Derived Compounds.

The conversion of bio-based molecules into valuable chemicals is essential for advancing sustainable processes and addressing global resource challenges. However, conventional catalytic methods often demand harsh conditions and suffer from low product selectivity. This study introduces a series of bifunctional PdxPty catalysts supported on TiO2, designed for achieving selective and mild-temperature catalysis in biomass conversion. Synthesized via a sol immobilization method and characterized by XRF, N2 physisorption, HRTEM, HAADF-STEM, and XPS, these catalysts demonstrate superior selectivity and activity over monometallic counterparts. In fact, at 20 bar H2, Pt/TiO2 show a low selectivity in benzophenone hydrodeoxygenation, favoring the benzhydrol hydrogenation product; similarly, Pd/TiO2 preferentially form the diphenylmethane hydrodeoxygenation (HDO) product, but with slow conversion rates. The synergistic combination of the two metals in Pd4Pt1/TiO2 drastically improve performance, with 100 % benzophenone conversion and 73 % diphenylmethane selectivity. DFT calculations confirm the synergy between Pd and Pt as the key to drive the activity and selectivity. Additionally, the catalysts also demonstrate high recyclability with minimal performance loss, and have been generalized for the HDO of vanillin and furfural, and in HMF oxidation. Overall, this work highlights the potential of bimetallic catalysts in enabling efficient and selective bio-based molecule conversion under mild conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信