{"title":"疏水纳米颗粒调节PD-L1的膜取向热力学。","authors":"Xiaoqian Lin, Xubo Lin","doi":"10.1039/d4bm01469c","DOIUrl":null,"url":null,"abstract":"<p><p>Tumor cells can escape from immune killing by binding their programmed death ligand-1 (PD-L1) to the programmed cell death protein 1 (PD-1) of T cells. These immune checkpoint proteins (PD-L1/PD-1) have become very important drug targets, since blocking PD-L1 or PD-1 can recover the killing capability of T cells against tumor cells. Instead of targeting the binding interface between PD-L1 and PD-1, we explored the possibility of regulating the membrane orientation thermodynamics of PD-L1 with ligand-modified ultra-small hydrophobic nanoparticles (NPs) using μs-scale coarse-grained molecular dynamics (MD) simulations in this work. Our MD results indicate that embedded hydrophobic NPs can significantly change the membrane orientation thermodynamics of the extracellular domain of PD-L1, enhancing the probability in the \"stand up\" state for better binding to PD-1. Meanwhile, embedded hydrophobic NPs promote the tilt of the transmembrane domain of PD-L1. Besides, effects on both extracellular and transmembrane domains are determined by the ligand length and NP concentration. Our study may provide an alternative strategy to achieve PD-L1-related immunotherapy with nanomedicine.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regulate PD-L1's membrane orientation thermodynamics with hydrophobic nanoparticles.\",\"authors\":\"Xiaoqian Lin, Xubo Lin\",\"doi\":\"10.1039/d4bm01469c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tumor cells can escape from immune killing by binding their programmed death ligand-1 (PD-L1) to the programmed cell death protein 1 (PD-1) of T cells. These immune checkpoint proteins (PD-L1/PD-1) have become very important drug targets, since blocking PD-L1 or PD-1 can recover the killing capability of T cells against tumor cells. Instead of targeting the binding interface between PD-L1 and PD-1, we explored the possibility of regulating the membrane orientation thermodynamics of PD-L1 with ligand-modified ultra-small hydrophobic nanoparticles (NPs) using μs-scale coarse-grained molecular dynamics (MD) simulations in this work. Our MD results indicate that embedded hydrophobic NPs can significantly change the membrane orientation thermodynamics of the extracellular domain of PD-L1, enhancing the probability in the \\\"stand up\\\" state for better binding to PD-1. Meanwhile, embedded hydrophobic NPs promote the tilt of the transmembrane domain of PD-L1. Besides, effects on both extracellular and transmembrane domains are determined by the ligand length and NP concentration. Our study may provide an alternative strategy to achieve PD-L1-related immunotherapy with nanomedicine.</p>\",\"PeriodicalId\":65,\"journal\":{\"name\":\"Biomaterials Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomaterials Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1039/d4bm01469c\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1039/d4bm01469c","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Regulate PD-L1's membrane orientation thermodynamics with hydrophobic nanoparticles.
Tumor cells can escape from immune killing by binding their programmed death ligand-1 (PD-L1) to the programmed cell death protein 1 (PD-1) of T cells. These immune checkpoint proteins (PD-L1/PD-1) have become very important drug targets, since blocking PD-L1 or PD-1 can recover the killing capability of T cells against tumor cells. Instead of targeting the binding interface between PD-L1 and PD-1, we explored the possibility of regulating the membrane orientation thermodynamics of PD-L1 with ligand-modified ultra-small hydrophobic nanoparticles (NPs) using μs-scale coarse-grained molecular dynamics (MD) simulations in this work. Our MD results indicate that embedded hydrophobic NPs can significantly change the membrane orientation thermodynamics of the extracellular domain of PD-L1, enhancing the probability in the "stand up" state for better binding to PD-1. Meanwhile, embedded hydrophobic NPs promote the tilt of the transmembrane domain of PD-L1. Besides, effects on both extracellular and transmembrane domains are determined by the ligand length and NP concentration. Our study may provide an alternative strategy to achieve PD-L1-related immunotherapy with nanomedicine.
期刊介绍:
Biomaterials Science is an international high impact journal exploring the science of biomaterials and their translation towards clinical use. Its scope encompasses new concepts in biomaterials design, studies into the interaction of biomaterials with the body, and the use of materials to answer fundamental biological questions.