三维唾液多微生物生物膜细菌胞外囊泡的微生物DNA谱-一项初步研究。

IF 10 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Chun Liu, Nadeeka S Udawatte, Andrew Liaw, Reuben Staples, Carlos Salomon, Chaminda Jayampath Seneviratne, Sašo Ivanovski, Pingping Han
{"title":"三维唾液多微生物生物膜细菌胞外囊泡的微生物DNA谱-一项初步研究。","authors":"Chun Liu, Nadeeka S Udawatte, Andrew Liaw, Reuben Staples, Carlos Salomon, Chaminda Jayampath Seneviratne, Sašo Ivanovski, Pingping Han","doi":"10.1002/adhm.202403300","DOIUrl":null,"url":null,"abstract":"<p><p>With the advent of multi-layered and 3D scaffolds, the understanding of microbiome composition and pathogenic mechanisms within polymicrobial biofilms is continuously evolving. A fundamental component in mediating the microenvironment and bacterial-host communication within the biofilm are bilayered nanoparticles secreted by bacteria, known as bacterial extracellular vesicles (BEVs), which transport key biomolecules including proteins, nucleic acids, and metabolites. Their characteristics and microbiome profiles are yet to be explored in the context of in vitro salivary polymicrobial biofilm. This pilot study aimed to compare the profiles of BEVs from salivary biofilm cultured on a 2D tissue culture plate and 3D melt electrowritten medical-grade polycaprolactone (MEW mPCL) scaffold. BEVs derived from MEW mPCL biofilm exhibited enhanced purity and yield without altered EV morphology and lipopolysaccharide (LPS) content, with enriched BEVs-associated DNA from Capnocytophaga, porphyromonas, and veillonella genus. Moreover, compared to saliva controls, MEW mPCL BEVs showed comparable DNA expression of Tannerella forsythia, and Treponema denticola and significantly higher expression in Porphyromonas gingivalis, Eikenella corrodens and Lactobacillus acidophilus. Together, these findings highlight a more detailed microbial profile with BEVs derived from salivary biofilms cultured on 3D MEW PCL scaffolds, which facilitates an effective in vitro model with a greater resemblance to naturally occurring biofilms.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2403300"},"PeriodicalIF":10.0000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microbial DNA Profiles of Bacterial Extracellular Vesicles from 3D Salivary Polymicrobial Biofilms - A Pilot Study.\",\"authors\":\"Chun Liu, Nadeeka S Udawatte, Andrew Liaw, Reuben Staples, Carlos Salomon, Chaminda Jayampath Seneviratne, Sašo Ivanovski, Pingping Han\",\"doi\":\"10.1002/adhm.202403300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>With the advent of multi-layered and 3D scaffolds, the understanding of microbiome composition and pathogenic mechanisms within polymicrobial biofilms is continuously evolving. A fundamental component in mediating the microenvironment and bacterial-host communication within the biofilm are bilayered nanoparticles secreted by bacteria, known as bacterial extracellular vesicles (BEVs), which transport key biomolecules including proteins, nucleic acids, and metabolites. Their characteristics and microbiome profiles are yet to be explored in the context of in vitro salivary polymicrobial biofilm. This pilot study aimed to compare the profiles of BEVs from salivary biofilm cultured on a 2D tissue culture plate and 3D melt electrowritten medical-grade polycaprolactone (MEW mPCL) scaffold. BEVs derived from MEW mPCL biofilm exhibited enhanced purity and yield without altered EV morphology and lipopolysaccharide (LPS) content, with enriched BEVs-associated DNA from Capnocytophaga, porphyromonas, and veillonella genus. Moreover, compared to saliva controls, MEW mPCL BEVs showed comparable DNA expression of Tannerella forsythia, and Treponema denticola and significantly higher expression in Porphyromonas gingivalis, Eikenella corrodens and Lactobacillus acidophilus. Together, these findings highlight a more detailed microbial profile with BEVs derived from salivary biofilms cultured on 3D MEW PCL scaffolds, which facilitates an effective in vitro model with a greater resemblance to naturally occurring biofilms.</p>\",\"PeriodicalId\":113,\"journal\":{\"name\":\"Advanced Healthcare Materials\",\"volume\":\" \",\"pages\":\"e2403300\"},\"PeriodicalIF\":10.0000,\"publicationDate\":\"2025-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Healthcare Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/adhm.202403300\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202403300","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

随着多层和3D支架的出现,对多微生物生物膜内微生物组组成和致病机制的理解不断发展。在生物膜内调节微环境和细菌-宿主通讯的一个基本组成部分是由细菌分泌的双层纳米颗粒,称为细菌细胞外囊泡(BEVs),它运输关键的生物分子,包括蛋白质、核酸和代谢物。在体外唾液多微生物生物膜的背景下,它们的特征和微生物组特征还有待探索。本初步研究旨在比较唾液生物膜在二维组织培养板和三维熔融电写医用级聚己内酯(MEW mPCL)支架上培养的bev的特征。从MEW mPCL生物膜中获得的bev具有更高的纯度和产量,而没有改变EV形态和脂多糖(LPS)含量,并且富集了来自碳噬菌属、卟啉单胞菌属和细孔菌属的bev相关DNA。此外,与唾液对照相比,MEW mPCL BEVs的连翘单宁菌和齿密螺旋体的DNA表达水平相当,牙龈卟啉单胞菌、腐蚀艾肯菌和嗜酸乳杆菌的DNA表达水平显著提高。总之,这些发现强调了在3D MEW PCL支架上培养的唾液生物膜衍生的bev的更详细的微生物特征,这有助于建立与自然发生的生物膜更相似的有效体外模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Microbial DNA Profiles of Bacterial Extracellular Vesicles from 3D Salivary Polymicrobial Biofilms - A Pilot Study.

With the advent of multi-layered and 3D scaffolds, the understanding of microbiome composition and pathogenic mechanisms within polymicrobial biofilms is continuously evolving. A fundamental component in mediating the microenvironment and bacterial-host communication within the biofilm are bilayered nanoparticles secreted by bacteria, known as bacterial extracellular vesicles (BEVs), which transport key biomolecules including proteins, nucleic acids, and metabolites. Their characteristics and microbiome profiles are yet to be explored in the context of in vitro salivary polymicrobial biofilm. This pilot study aimed to compare the profiles of BEVs from salivary biofilm cultured on a 2D tissue culture plate and 3D melt electrowritten medical-grade polycaprolactone (MEW mPCL) scaffold. BEVs derived from MEW mPCL biofilm exhibited enhanced purity and yield without altered EV morphology and lipopolysaccharide (LPS) content, with enriched BEVs-associated DNA from Capnocytophaga, porphyromonas, and veillonella genus. Moreover, compared to saliva controls, MEW mPCL BEVs showed comparable DNA expression of Tannerella forsythia, and Treponema denticola and significantly higher expression in Porphyromonas gingivalis, Eikenella corrodens and Lactobacillus acidophilus. Together, these findings highlight a more detailed microbial profile with BEVs derived from salivary biofilms cultured on 3D MEW PCL scaffolds, which facilitates an effective in vitro model with a greater resemblance to naturally occurring biofilms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Healthcare Materials
Advanced Healthcare Materials 工程技术-生物材料
CiteScore
14.40
自引率
3.00%
发文量
600
审稿时长
1.8 months
期刊介绍: Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信