La2Ce2O7†上氧交换机制的揭示

IF 5.2 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yizhou Shen, Vincent Thoréton and Reidar Haugsrud
{"title":"La2Ce2O7†上氧交换机制的揭示","authors":"Yizhou Shen, Vincent Thoréton and Reidar Haugsrud","doi":"10.1039/D4MA00840E","DOIUrl":null,"url":null,"abstract":"<p >Understanding the mechanism of the oxygen exchange rate between the gas-phase and the oxide surface is essential to utilize electrochemical transport of oxygen in ceria-based materials for sustainable technologies. This contribution applies pulse isotope exchange (PIE) to investigate the oxygen exchange mechanism on La<small><sub>2</sub></small>Ce<small><sub>2</sub></small>O<small><sub>7</sub></small> and 5% Pr-substituted La<small><sub>2</sub></small>Ce<small><sub>2</sub></small>O<small><sub>7</sub></small>. The oxygen exchange kinetics is rate-limited by the dissociation of adsorbed molecular oxygen. Pr substitution increases the surface kinetics, presumably due to an increased concentration of electronic defects that enhances charge transfer of electronic defects at the surface. Humidity decreases the exchange rate due to the selective dissociative adsorption of water molecules into surface oxygen vacancies, forming hydroxide defects. This effect diminishes with increasing temperature due to the exothermic nature of hydration.</p>","PeriodicalId":18242,"journal":{"name":"Materials Advances","volume":" 1","pages":" 409-422"},"PeriodicalIF":5.2000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ma/d4ma00840e?page=search","citationCount":"0","resultStr":"{\"title\":\"Unravelling the oxygen exchange mechanism on La2Ce2O7†\",\"authors\":\"Yizhou Shen, Vincent Thoréton and Reidar Haugsrud\",\"doi\":\"10.1039/D4MA00840E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Understanding the mechanism of the oxygen exchange rate between the gas-phase and the oxide surface is essential to utilize electrochemical transport of oxygen in ceria-based materials for sustainable technologies. This contribution applies pulse isotope exchange (PIE) to investigate the oxygen exchange mechanism on La<small><sub>2</sub></small>Ce<small><sub>2</sub></small>O<small><sub>7</sub></small> and 5% Pr-substituted La<small><sub>2</sub></small>Ce<small><sub>2</sub></small>O<small><sub>7</sub></small>. The oxygen exchange kinetics is rate-limited by the dissociation of adsorbed molecular oxygen. Pr substitution increases the surface kinetics, presumably due to an increased concentration of electronic defects that enhances charge transfer of electronic defects at the surface. Humidity decreases the exchange rate due to the selective dissociative adsorption of water molecules into surface oxygen vacancies, forming hydroxide defects. This effect diminishes with increasing temperature due to the exothermic nature of hydration.</p>\",\"PeriodicalId\":18242,\"journal\":{\"name\":\"Materials Advances\",\"volume\":\" 1\",\"pages\":\" 409-422\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ma/d4ma00840e?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ma/d4ma00840e\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ma/d4ma00840e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

了解气相和氧化物表面之间氧交换速率的机理是利用氧化铈基材料中氧的电化学传输进行可持续技术的必要条件。本文应用脉冲同位素交换(PIE)研究了La2Ce2O7和5% pr取代La2Ce2O7的氧交换机理。氧交换动力学受吸附分子氧解离的速率限制。Pr取代增加了表面动力学,可能是由于电子缺陷浓度的增加,增强了表面电子缺陷的电荷转移。湿度降低了交换速率,因为水分子选择性地解离吸附到表面氧空位上,形成氢氧化物缺陷。由于水化的放热性质,这种效应随着温度的升高而减弱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Unravelling the oxygen exchange mechanism on La2Ce2O7†

Unravelling the oxygen exchange mechanism on La2Ce2O7†

Understanding the mechanism of the oxygen exchange rate between the gas-phase and the oxide surface is essential to utilize electrochemical transport of oxygen in ceria-based materials for sustainable technologies. This contribution applies pulse isotope exchange (PIE) to investigate the oxygen exchange mechanism on La2Ce2O7 and 5% Pr-substituted La2Ce2O7. The oxygen exchange kinetics is rate-limited by the dissociation of adsorbed molecular oxygen. Pr substitution increases the surface kinetics, presumably due to an increased concentration of electronic defects that enhances charge transfer of electronic defects at the surface. Humidity decreases the exchange rate due to the selective dissociative adsorption of water molecules into surface oxygen vacancies, forming hydroxide defects. This effect diminishes with increasing temperature due to the exothermic nature of hydration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Advances
Materials Advances MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
7.60
自引率
2.00%
发文量
665
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信