解锁太阳能电池材料的全部潜力:使用响应面建模的参数灵敏度分析和优化†

IF 5.2 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Manoj Kumar, Sanju Rani, Xu Wang and Vidya Nand Singh
{"title":"解锁太阳能电池材料的全部潜力:使用响应面建模的参数灵敏度分析和优化†","authors":"Manoj Kumar, Sanju Rani, Xu Wang and Vidya Nand Singh","doi":"10.1039/D4MA00728J","DOIUrl":null,"url":null,"abstract":"<p >This study introduces a novel approach for predicting solar cell efficiency and conducting sensitivity analysis of key parameters and their interactions, leveraging response surface modeling to optimize interacting solar cell structure parameters for the best performance. Integrating response surface modeling with solar cell simulation software enhances the efficiency prediction process that enables the solar cell capacitance simulator (SCAPS)-1D software to unlock the true potential of a material. Through the utilization of central composite design (CCD) and response surface modeling (RSM), this research minimizes material waste during synthesis, saves time, and conserves energy. The methodology involves selecting five input parameters within specific ranges, modeling them using the least square method to create a polynomial regression model, and validating the model through efficiency predictions compared to SCAPS-1D simulations. The parameter sensitivity analysis is validated using analysis of variance (ANOVA) test results, demonstrating the precision of the RSM in predicting solar cell efficiency with a maximum error of 1.93%.</p>","PeriodicalId":18242,"journal":{"name":"Materials Advances","volume":" 1","pages":" 423-432"},"PeriodicalIF":5.2000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ma/d4ma00728j?page=search","citationCount":"0","resultStr":"{\"title\":\"Unlocking the full potential of solar cell materials: parameter sensitivity analysis and optimization using response surface modelling†\",\"authors\":\"Manoj Kumar, Sanju Rani, Xu Wang and Vidya Nand Singh\",\"doi\":\"10.1039/D4MA00728J\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >This study introduces a novel approach for predicting solar cell efficiency and conducting sensitivity analysis of key parameters and their interactions, leveraging response surface modeling to optimize interacting solar cell structure parameters for the best performance. Integrating response surface modeling with solar cell simulation software enhances the efficiency prediction process that enables the solar cell capacitance simulator (SCAPS)-1D software to unlock the true potential of a material. Through the utilization of central composite design (CCD) and response surface modeling (RSM), this research minimizes material waste during synthesis, saves time, and conserves energy. The methodology involves selecting five input parameters within specific ranges, modeling them using the least square method to create a polynomial regression model, and validating the model through efficiency predictions compared to SCAPS-1D simulations. The parameter sensitivity analysis is validated using analysis of variance (ANOVA) test results, demonstrating the precision of the RSM in predicting solar cell efficiency with a maximum error of 1.93%.</p>\",\"PeriodicalId\":18242,\"journal\":{\"name\":\"Materials Advances\",\"volume\":\" 1\",\"pages\":\" 423-432\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ma/d4ma00728j?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ma/d4ma00728j\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ma/d4ma00728j","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种预测太阳能电池效率的新方法,并对关键参数及其相互作用进行敏感性分析,利用响应面建模来优化相互作用的太阳能电池结构参数,以获得最佳性能。将响应面建模与太阳能电池仿真软件相结合,增强了效率预测过程,使太阳能电池电容模拟器(SCAPS)-1D软件能够释放材料的真正潜力。本研究通过利用中心复合设计(CCD)和响应面建模(RSM),最大限度地减少合成过程中的材料浪费,节省时间,节约能源。该方法包括在特定范围内选择5个输入参数,使用最小二乘法对其建模以创建多项式回归模型,并通过与SCAPS-1D模拟的效率预测来验证模型。方差分析(ANOVA)检验结果验证了参数敏感性分析,表明RSM预测太阳能电池效率的精度,最大误差为1.93%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Unlocking the full potential of solar cell materials: parameter sensitivity analysis and optimization using response surface modelling†

Unlocking the full potential of solar cell materials: parameter sensitivity analysis and optimization using response surface modelling†

This study introduces a novel approach for predicting solar cell efficiency and conducting sensitivity analysis of key parameters and their interactions, leveraging response surface modeling to optimize interacting solar cell structure parameters for the best performance. Integrating response surface modeling with solar cell simulation software enhances the efficiency prediction process that enables the solar cell capacitance simulator (SCAPS)-1D software to unlock the true potential of a material. Through the utilization of central composite design (CCD) and response surface modeling (RSM), this research minimizes material waste during synthesis, saves time, and conserves energy. The methodology involves selecting five input parameters within specific ranges, modeling them using the least square method to create a polynomial regression model, and validating the model through efficiency predictions compared to SCAPS-1D simulations. The parameter sensitivity analysis is validated using analysis of variance (ANOVA) test results, demonstrating the precision of the RSM in predicting solar cell efficiency with a maximum error of 1.93%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Advances
Materials Advances MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
7.60
自引率
2.00%
发文量
665
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信