基于变压器的面部视频血压估计网络

IF 4.3 2区 综合性期刊 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Martin Clinton Tosima Manullang;Yuan-Hsiang Lin;Nai-Kuan Chou
{"title":"基于变压器的面部视频血压估计网络","authors":"Martin Clinton Tosima Manullang;Yuan-Hsiang Lin;Nai-Kuan Chou","doi":"10.1109/JSEN.2024.3496115","DOIUrl":null,"url":null,"abstract":"Blood pressure (BP) monitoring is essential for diagnosing and managing various health conditions. While traditional contact-based methods have been effective, they can be uncomfortable for continuous or prolonged monitoring. The innovative discovery of remote photoplethysmography (rPPG) brings a new era for noncontact BP measurement. In this article, a transformer-based deep learning network named BP network (BPNet) was proposed to estimate noncontact BP from RGB videos. The BPNet comprises three primary components: the signal branch, feature branch, and predictor. The architecture is designed to integrate information from rPPG signal and their derivatives, rPPG features, and user inputs. A standout feature of our model is its capability to work without the need for calibration, making it more user-friendly. We assessed our model, BPNet, using two diverse datasets: our BESTLab dataset and the externally sourced Vital Video (VV) dataset, which is noted for its varied subject demographics and extensive BP distribution. The results show that BPNet outperforms recent benchmarks, marking a significant advancement in noncontact BP measurement technology. It also showed greater efficiency in terms of inference time and model complexity. In the future, the approach might focus on developing a fully automated deep learning system that removes the need for manual preprocessing and rPPG extraction. Furthermore, adding subject’s demographic features and medical history could improve accuracy.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"25 1","pages":"1969-1977"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Transformer-Based Network for Estimating Blood Pressure Using Facial Videos\",\"authors\":\"Martin Clinton Tosima Manullang;Yuan-Hsiang Lin;Nai-Kuan Chou\",\"doi\":\"10.1109/JSEN.2024.3496115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Blood pressure (BP) monitoring is essential for diagnosing and managing various health conditions. While traditional contact-based methods have been effective, they can be uncomfortable for continuous or prolonged monitoring. The innovative discovery of remote photoplethysmography (rPPG) brings a new era for noncontact BP measurement. In this article, a transformer-based deep learning network named BP network (BPNet) was proposed to estimate noncontact BP from RGB videos. The BPNet comprises three primary components: the signal branch, feature branch, and predictor. The architecture is designed to integrate information from rPPG signal and their derivatives, rPPG features, and user inputs. A standout feature of our model is its capability to work without the need for calibration, making it more user-friendly. We assessed our model, BPNet, using two diverse datasets: our BESTLab dataset and the externally sourced Vital Video (VV) dataset, which is noted for its varied subject demographics and extensive BP distribution. The results show that BPNet outperforms recent benchmarks, marking a significant advancement in noncontact BP measurement technology. It also showed greater efficiency in terms of inference time and model complexity. In the future, the approach might focus on developing a fully automated deep learning system that removes the need for manual preprocessing and rPPG extraction. Furthermore, adding subject’s demographic features and medical history could improve accuracy.\",\"PeriodicalId\":447,\"journal\":{\"name\":\"IEEE Sensors Journal\",\"volume\":\"25 1\",\"pages\":\"1969-1977\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Journal\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10756549/\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/10756549/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

血压(BP)监测对于诊断和管理各种健康状况至关重要。虽然传统的基于接触的方法是有效的,但对于持续或长时间的监测来说,它们可能会让人不舒服。远程光电容积脉搏波(rPPG)的创新发现为非接触式血压测量带来了一个新时代。本文提出了一种基于变压器的深度学习网络BP网络(BPNet),用于从RGB视频中估计非接触BP。BPNet由三个主要部分组成:信号分支、特征分支和预测器。该体系结构旨在集成来自rPPG信号及其衍生物、rPPG特征和用户输入的信息。我们的模型的一个突出特点是它的工作能力无需校准,使其更加用户友好。我们使用两个不同的数据集来评估我们的模型BPNet:我们的BESTLab数据集和外部来源的重要视频(VV)数据集,该数据集以其不同的主题人口统计数据和广泛的BP分布而闻名。结果表明,BPNet优于最近的基准测试,标志着非接触式BP测量技术的重大进步。它在推理时间和模型复杂性方面也显示出更高的效率。在未来,该方法可能会专注于开发一个完全自动化的深度学习系统,以消除人工预处理和rPPG提取的需要。此外,加入受试者的人口学特征和病史可以提高准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Transformer-Based Network for Estimating Blood Pressure Using Facial Videos
Blood pressure (BP) monitoring is essential for diagnosing and managing various health conditions. While traditional contact-based methods have been effective, they can be uncomfortable for continuous or prolonged monitoring. The innovative discovery of remote photoplethysmography (rPPG) brings a new era for noncontact BP measurement. In this article, a transformer-based deep learning network named BP network (BPNet) was proposed to estimate noncontact BP from RGB videos. The BPNet comprises three primary components: the signal branch, feature branch, and predictor. The architecture is designed to integrate information from rPPG signal and their derivatives, rPPG features, and user inputs. A standout feature of our model is its capability to work without the need for calibration, making it more user-friendly. We assessed our model, BPNet, using two diverse datasets: our BESTLab dataset and the externally sourced Vital Video (VV) dataset, which is noted for its varied subject demographics and extensive BP distribution. The results show that BPNet outperforms recent benchmarks, marking a significant advancement in noncontact BP measurement technology. It also showed greater efficiency in terms of inference time and model complexity. In the future, the approach might focus on developing a fully automated deep learning system that removes the need for manual preprocessing and rPPG extraction. Furthermore, adding subject’s demographic features and medical history could improve accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Sensors Journal
IEEE Sensors Journal 工程技术-工程:电子与电气
CiteScore
7.70
自引率
14.00%
发文量
2058
审稿时长
5.2 months
期刊介绍: The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following: -Sensor Phenomenology, Modelling, and Evaluation -Sensor Materials, Processing, and Fabrication -Chemical and Gas Sensors -Microfluidics and Biosensors -Optical Sensors -Physical Sensors: Temperature, Mechanical, Magnetic, and others -Acoustic and Ultrasonic Sensors -Sensor Packaging -Sensor Networks -Sensor Applications -Sensor Systems: Signals, Processing, and Interfaces -Actuators and Sensor Power Systems -Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting -Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data) -Sensors in Industrial Practice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信