一种有效预测空气质量数据的新型混合方法

IF 2.2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Jintu Borah;Tanujit Chakraborty;Md. Shahrul Md. Nadzir;Mylene G. Cayetano;Francesco Benedetto;Shubhankar Majumdar
{"title":"一种有效预测空气质量数据的新型混合方法","authors":"Jintu Borah;Tanujit Chakraborty;Md. Shahrul Md. Nadzir;Mylene G. Cayetano;Francesco Benedetto;Shubhankar Majumdar","doi":"10.1109/LSENS.2024.3519719","DOIUrl":null,"url":null,"abstract":"Accurate and reliable air quality forecasting is essential for protecting public health, sustainable development, pollution control, and enhanced urban planning. This letter proposes a novel architecture namely wavelet-based CatBoost to forecast the real-time concentrations of air pollutants by combining the maximal overlapping discrete wavelet transform with the CatBoost model. This hybrid approach efficiently transforms time series of air pollution concentration levels into high-frequency and low-frequency components, thereby extracting signal from noise and improving prediction accuracy and robustness. Evaluation of two distinct regional datasets, from the Central Air Pollution Control Board sensor network and a low-cost air quality sensor system, underscores the superior performance of our proposed methodology in real-time forecasting compared to the state-of-the-art machine learning and deep learning architectures.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"9 1","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Hybrid Approach For Efficiently Forecasting Air Quality Data\",\"authors\":\"Jintu Borah;Tanujit Chakraborty;Md. Shahrul Md. Nadzir;Mylene G. Cayetano;Francesco Benedetto;Shubhankar Majumdar\",\"doi\":\"10.1109/LSENS.2024.3519719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate and reliable air quality forecasting is essential for protecting public health, sustainable development, pollution control, and enhanced urban planning. This letter proposes a novel architecture namely wavelet-based CatBoost to forecast the real-time concentrations of air pollutants by combining the maximal overlapping discrete wavelet transform with the CatBoost model. This hybrid approach efficiently transforms time series of air pollution concentration levels into high-frequency and low-frequency components, thereby extracting signal from noise and improving prediction accuracy and robustness. Evaluation of two distinct regional datasets, from the Central Air Pollution Control Board sensor network and a low-cost air quality sensor system, underscores the superior performance of our proposed methodology in real-time forecasting compared to the state-of-the-art machine learning and deep learning architectures.\",\"PeriodicalId\":13014,\"journal\":{\"name\":\"IEEE Sensors Letters\",\"volume\":\"9 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10806566/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10806566/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

准确可靠的空气质量预报对保护公众健康、可持续发展、污染控制和加强城市规划至关重要。本文提出了一种新颖的架构,即基于小波的 CatBoost,通过将最大重叠离散小波变换与 CatBoost 模型相结合来预测空气污染物的实时浓度。这种混合方法能有效地将空气污染浓度水平的时间序列转换为高频和低频成分,从而从噪声中提取信号,提高预测精度和鲁棒性。通过对来自中央空气污染控制委员会传感器网络和低成本空气质量传感器系统的两个不同区域数据集进行评估,我们发现,与最先进的机器学习和深度学习架构相比,我们提出的方法在实时预测方面表现出色。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Hybrid Approach For Efficiently Forecasting Air Quality Data
Accurate and reliable air quality forecasting is essential for protecting public health, sustainable development, pollution control, and enhanced urban planning. This letter proposes a novel architecture namely wavelet-based CatBoost to forecast the real-time concentrations of air pollutants by combining the maximal overlapping discrete wavelet transform with the CatBoost model. This hybrid approach efficiently transforms time series of air pollution concentration levels into high-frequency and low-frequency components, thereby extracting signal from noise and improving prediction accuracy and robustness. Evaluation of two distinct regional datasets, from the Central Air Pollution Control Board sensor network and a low-cost air quality sensor system, underscores the superior performance of our proposed methodology in real-time forecasting compared to the state-of-the-art machine learning and deep learning architectures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Sensors Letters
IEEE Sensors Letters Engineering-Electrical and Electronic Engineering
CiteScore
3.50
自引率
7.10%
发文量
194
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信