{"title":"基于合成离群点暴露和对比学习的瓷砖剥落分割的无监督异常检测","authors":"Hai-Wei Wang, Rih-Teng Wu","doi":"10.1016/j.autcon.2024.105941","DOIUrl":null,"url":null,"abstract":"Tile spalling poses significant threats to pedestrians on sidewalks. Recently, deep learning-based approaches have been developed for autonomous building assessments. However, training a supervised model typically requires a large labeled dataset, which is often unavailable in new domain tasks. Moreover, data acquisition and ground-truth labeling are costly. This paper presents an unsupervised framework for anomaly detection of tile spalling. The framework incorporates uncertainty estimation and contrastive learning by training a segmentation model on a source dataset containing known classes, excluding spalling. Spalling is subsequently identified as outlier pixels based on elevated uncertainty scores. Additionally, a synthetic pattern, dubbed “Spalling Craft”, is developed for outlier exposure to further enhance model performance. The proposed approach outperforms state-of-the-art baselines by approximately 18.4%, 46.6%, and 31.7% in AUC, AP, and FPR95 scores, respectively. Compared to supervised learning methods, the framework significantly improves data efficiency while achieving strong performance in tile spalling segmentation.","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":"14 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unsupervised anomaly detection for tile spalling segmentation using synthetic outlier exposure and contrastive learning\",\"authors\":\"Hai-Wei Wang, Rih-Teng Wu\",\"doi\":\"10.1016/j.autcon.2024.105941\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tile spalling poses significant threats to pedestrians on sidewalks. Recently, deep learning-based approaches have been developed for autonomous building assessments. However, training a supervised model typically requires a large labeled dataset, which is often unavailable in new domain tasks. Moreover, data acquisition and ground-truth labeling are costly. This paper presents an unsupervised framework for anomaly detection of tile spalling. The framework incorporates uncertainty estimation and contrastive learning by training a segmentation model on a source dataset containing known classes, excluding spalling. Spalling is subsequently identified as outlier pixels based on elevated uncertainty scores. Additionally, a synthetic pattern, dubbed “Spalling Craft”, is developed for outlier exposure to further enhance model performance. The proposed approach outperforms state-of-the-art baselines by approximately 18.4%, 46.6%, and 31.7% in AUC, AP, and FPR95 scores, respectively. Compared to supervised learning methods, the framework significantly improves data efficiency while achieving strong performance in tile spalling segmentation.\",\"PeriodicalId\":8660,\"journal\":{\"name\":\"Automation in Construction\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automation in Construction\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.autcon.2024.105941\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation in Construction","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.autcon.2024.105941","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Unsupervised anomaly detection for tile spalling segmentation using synthetic outlier exposure and contrastive learning
Tile spalling poses significant threats to pedestrians on sidewalks. Recently, deep learning-based approaches have been developed for autonomous building assessments. However, training a supervised model typically requires a large labeled dataset, which is often unavailable in new domain tasks. Moreover, data acquisition and ground-truth labeling are costly. This paper presents an unsupervised framework for anomaly detection of tile spalling. The framework incorporates uncertainty estimation and contrastive learning by training a segmentation model on a source dataset containing known classes, excluding spalling. Spalling is subsequently identified as outlier pixels based on elevated uncertainty scores. Additionally, a synthetic pattern, dubbed “Spalling Craft”, is developed for outlier exposure to further enhance model performance. The proposed approach outperforms state-of-the-art baselines by approximately 18.4%, 46.6%, and 31.7% in AUC, AP, and FPR95 scores, respectively. Compared to supervised learning methods, the framework significantly improves data efficiency while achieving strong performance in tile spalling segmentation.
期刊介绍:
Automation in Construction is an international journal that focuses on publishing original research papers related to the use of Information Technologies in various aspects of the construction industry. The journal covers topics such as design, engineering, construction technologies, and the maintenance and management of constructed facilities.
The scope of Automation in Construction is extensive and covers all stages of the construction life cycle. This includes initial planning and design, construction of the facility, operation and maintenance, as well as the eventual dismantling and recycling of buildings and engineering structures.