基于流阻参数学习的实时洪水淹没建模

IF 4.6 1区 地球科学 Q2 ENVIRONMENTAL SCIENCES
Alexander Young, John D. Albertson, Giovanni Moretti, Stefano Orlandini
{"title":"基于流阻参数学习的实时洪水淹没建模","authors":"Alexander Young, John D. Albertson, Giovanni Moretti, Stefano Orlandini","doi":"10.1029/2024wr038424","DOIUrl":null,"url":null,"abstract":"Emergency response to flood plain inundations requires real-time forecasts of flow depth, velocity, and arrival time. Detailed and rapid flood inundation forecasts can be obtained from numerical solution of 2D unsteady flow equations based on high-resolution topographic data and geomorphologically informed unstructured meshes. However, flow resistance parameters representing the effects of land surface topography unresolved by digital terrain model data remain uncertain. In the present study, flow resistance parameters representing the effects of roughness, vegetation, and buildings are determined hydraulically in real-time using flow depth observations. A detailed numerical reproduction of a real flood has been largely corroborated by observations and subsequently used as a surrogate of the ground truth target. In synthetic numerical experiments, flow depth observations are obtained from a network of in-situ flow depth sensors assigned to hydraulically relevant locations in the flood plain. Starting from a generic resistance parameter set, the capability of a tandem 2D surface flow model and Bayesian optimization technique to achieve convergence to the target resistance parameter set is tested. Convergence to the target resistance parameter set was obtained with 50 or fewer tandem flow + optimization iterations for each forecasting cycle in which the difference between simulated and observed flow depths is minimized. The flood arrival time errors across a 52 <span data-altimg=\"/cms/asset/38542f77-d5ab-40b0-a37b-8f79f83ce532/wrcr27640-math-0001.png\"></span><mjx-container ctxtmenu_counter=\"294\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/wrcr27640-math-0001.png\"><mjx-semantics><mjx-mrow><mjx-msup data-semantic-children=\"0,1\" data-semantic- data-semantic-role=\"unknown\" data-semantic-speech=\"km Superscript 2\" data-semantic-type=\"superscript\"><mjx-mtext data-semantic-annotation=\"clearspeak:unit\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"text\"><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mtext><mjx-script style=\"vertical-align: 0.421em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msup></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:00431397:media:wrcr27640:wrcr27640-math-0001\" display=\"inline\" location=\"graphic/wrcr27640-math-0001.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><msup data-semantic-=\"\" data-semantic-children=\"0,1\" data-semantic-role=\"unknown\" data-semantic-speech=\"km Superscript 2\" data-semantic-type=\"superscript\"><mtext data-semantic-=\"\" data-semantic-annotation=\"clearspeak:unit\" data-semantic-font=\"normal\" data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"text\">km</mtext><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\">2</mn></msup></mrow>${\\text{km}}^{2}$</annotation></semantics></math></mjx-assistive-mml></mjx-container> flood plain inundation area were reduced by 3.13 hr with respect to results obtained without optimization from a fixed range of flow resistance parameters. Performance metrics like critical success index and probability of detection reach values above 90% across the flood plain.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":"66 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real-Time Flood Inundation Modeling With Flow Resistance Parameter Learning\",\"authors\":\"Alexander Young, John D. Albertson, Giovanni Moretti, Stefano Orlandini\",\"doi\":\"10.1029/2024wr038424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Emergency response to flood plain inundations requires real-time forecasts of flow depth, velocity, and arrival time. Detailed and rapid flood inundation forecasts can be obtained from numerical solution of 2D unsteady flow equations based on high-resolution topographic data and geomorphologically informed unstructured meshes. However, flow resistance parameters representing the effects of land surface topography unresolved by digital terrain model data remain uncertain. In the present study, flow resistance parameters representing the effects of roughness, vegetation, and buildings are determined hydraulically in real-time using flow depth observations. A detailed numerical reproduction of a real flood has been largely corroborated by observations and subsequently used as a surrogate of the ground truth target. In synthetic numerical experiments, flow depth observations are obtained from a network of in-situ flow depth sensors assigned to hydraulically relevant locations in the flood plain. Starting from a generic resistance parameter set, the capability of a tandem 2D surface flow model and Bayesian optimization technique to achieve convergence to the target resistance parameter set is tested. Convergence to the target resistance parameter set was obtained with 50 or fewer tandem flow + optimization iterations for each forecasting cycle in which the difference between simulated and observed flow depths is minimized. The flood arrival time errors across a 52 <span data-altimg=\\\"/cms/asset/38542f77-d5ab-40b0-a37b-8f79f83ce532/wrcr27640-math-0001.png\\\"></span><mjx-container ctxtmenu_counter=\\\"294\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\" location=\\\"graphic/wrcr27640-math-0001.png\\\"><mjx-semantics><mjx-mrow><mjx-msup data-semantic-children=\\\"0,1\\\" data-semantic- data-semantic-role=\\\"unknown\\\" data-semantic-speech=\\\"km Superscript 2\\\" data-semantic-type=\\\"superscript\\\"><mjx-mtext data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"text\\\"><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mtext><mjx-script style=\\\"vertical-align: 0.421em;\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\" size=\\\"s\\\"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msup></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"urn:x-wiley:00431397:media:wrcr27640:wrcr27640-math-0001\\\" display=\\\"inline\\\" location=\\\"graphic/wrcr27640-math-0001.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mrow><msup data-semantic-=\\\"\\\" data-semantic-children=\\\"0,1\\\" data-semantic-role=\\\"unknown\\\" data-semantic-speech=\\\"km Superscript 2\\\" data-semantic-type=\\\"superscript\\\"><mtext data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"text\\\">km</mtext><mn data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\">2</mn></msup></mrow>${\\\\text{km}}^{2}$</annotation></semantics></math></mjx-assistive-mml></mjx-container> flood plain inundation area were reduced by 3.13 hr with respect to results obtained without optimization from a fixed range of flow resistance parameters. Performance metrics like critical success index and probability of detection reach values above 90% across the flood plain.\",\"PeriodicalId\":23799,\"journal\":{\"name\":\"Water Resources Research\",\"volume\":\"66 1\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Resources Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1029/2024wr038424\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2024wr038424","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

对平原洪水的应急响应需要实时预报水流深度、流速和到达时间。基于高分辨率地形数据和地貌信息的非结构化网格,二维非定常流方程的数值解可以获得详细、快速的洪水淹没预报。然而,代表地表地形影响的流阻参数仍然不确定,数字地形模型数据无法解决。在本研究中,水流阻力参数代表粗糙度、植被和建筑物的影响,通过水流深度观测实时确定。实际洪水的详细数值再现在很大程度上得到了观测结果的证实,随后被用作地面真实目标的替代。在综合数值实验中,水流深度观测是通过在洪泛区水力相关位置设置的原位水流深度传感器网络获得的。从一般阻力参数集出发,测试了串联二维表面流动模型和贝叶斯优化技术收敛到目标阻力参数集的能力。每个预测周期的串联流+优化迭代次数在50次或更少的情况下收敛到目标阻力参数集,其中模拟流深度与观测流深度之间的差最小。在52 km2${\text{km}}^{2}$漫滩淹没区内,相对于在固定流阻参数范围内未经优化的结果,洪水到达时间误差减少了3.13 hr。关键成功指数和探测概率等性能指标在整个洪泛平原达到90%以上的值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-Time Flood Inundation Modeling With Flow Resistance Parameter Learning
Emergency response to flood plain inundations requires real-time forecasts of flow depth, velocity, and arrival time. Detailed and rapid flood inundation forecasts can be obtained from numerical solution of 2D unsteady flow equations based on high-resolution topographic data and geomorphologically informed unstructured meshes. However, flow resistance parameters representing the effects of land surface topography unresolved by digital terrain model data remain uncertain. In the present study, flow resistance parameters representing the effects of roughness, vegetation, and buildings are determined hydraulically in real-time using flow depth observations. A detailed numerical reproduction of a real flood has been largely corroborated by observations and subsequently used as a surrogate of the ground truth target. In synthetic numerical experiments, flow depth observations are obtained from a network of in-situ flow depth sensors assigned to hydraulically relevant locations in the flood plain. Starting from a generic resistance parameter set, the capability of a tandem 2D surface flow model and Bayesian optimization technique to achieve convergence to the target resistance parameter set is tested. Convergence to the target resistance parameter set was obtained with 50 or fewer tandem flow + optimization iterations for each forecasting cycle in which the difference between simulated and observed flow depths is minimized. The flood arrival time errors across a 52 km2${\text{km}}^{2}$ flood plain inundation area were reduced by 3.13 hr with respect to results obtained without optimization from a fixed range of flow resistance parameters. Performance metrics like critical success index and probability of detection reach values above 90% across the flood plain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Water Resources Research
Water Resources Research 环境科学-湖沼学
CiteScore
8.80
自引率
13.00%
发文量
599
审稿时长
3.5 months
期刊介绍: Water Resources Research (WRR) is an interdisciplinary journal that focuses on hydrology and water resources. It publishes original research in the natural and social sciences of water. It emphasizes the role of water in the Earth system, including physical, chemical, biological, and ecological processes in water resources research and management, including social, policy, and public health implications. It encompasses observational, experimental, theoretical, analytical, numerical, and data-driven approaches that advance the science of water and its management. Submissions are evaluated for their novelty, accuracy, significance, and broader implications of the findings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信