{"title":"用芳基二胍武装的共价有机框架原位自清洁去除新出现的有机污染物","authors":"Ruifang Qi, Jinming Lei, Lili Dong, Sadam Hussain Tumrani, Chenghong Feng","doi":"10.1016/j.jhazmat.2024.137073","DOIUrl":null,"url":null,"abstract":"An in situ self-cleaning covalent organic framework featuring arylbiguanide arms (Aryl-BIG-COF) was first developed to remove emerging organic pollutants such as propranolol (PRO) from water. The main breakthroughs addressed the scarcity of functional active sites, the impracticality of ex situ regeneration, and the rapid recombination of electron<img alt=\"single bond\" src=\"https://sdfestaticassets-us-east-1.sciencedirectassets.com/shared-assets/55/entities/sbnd.gif\" style=\"vertical-align:middle\"/>hole pairs in the application of COFs. Owing to the directional capture ability and electronic structure regulation of the arylbiguanide arms, the adsorption capacity and photocatalytic degradation rate of the newly synthesized COF increased by nearly four and seven times, respectively. Its self-cleaning ability, driven by the photocatalytic regeneration of active sites, enabled in situ removal of PRO and sustained over 90% removal efficiency after six cycles. Moreover, it demonstrated broad applicability for removing PRO and other emerging pollutants, such as bisphenol A (BPA), tetracycline (TC), and norfloxacin (NOR), across various water matrices with less residual toxicity. The coexisting organic matter and ions in natural water promoted the removal of PRO. The enhancement mechanism involved arylbiguanide arms narrowing the band gap and inducing local charge polarization, thereby increasing the separation efficiency of electron<img alt=\"single bond\" src=\"https://sdfestaticassets-us-east-1.sciencedirectassets.com/shared-assets/55/entities/sbnd.gif\" style=\"vertical-align:middle\"/>hole pairs. This work provides significant insights into the structural design and practical applications of COFs for purifying water.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"237 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In situ self-cleaning removal of emerging organic contaminants with covalent organic framework armed with arylbiguanide\",\"authors\":\"Ruifang Qi, Jinming Lei, Lili Dong, Sadam Hussain Tumrani, Chenghong Feng\",\"doi\":\"10.1016/j.jhazmat.2024.137073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An in situ self-cleaning covalent organic framework featuring arylbiguanide arms (Aryl-BIG-COF) was first developed to remove emerging organic pollutants such as propranolol (PRO) from water. The main breakthroughs addressed the scarcity of functional active sites, the impracticality of ex situ regeneration, and the rapid recombination of electron<img alt=\\\"single bond\\\" src=\\\"https://sdfestaticassets-us-east-1.sciencedirectassets.com/shared-assets/55/entities/sbnd.gif\\\" style=\\\"vertical-align:middle\\\"/>hole pairs in the application of COFs. Owing to the directional capture ability and electronic structure regulation of the arylbiguanide arms, the adsorption capacity and photocatalytic degradation rate of the newly synthesized COF increased by nearly four and seven times, respectively. Its self-cleaning ability, driven by the photocatalytic regeneration of active sites, enabled in situ removal of PRO and sustained over 90% removal efficiency after six cycles. Moreover, it demonstrated broad applicability for removing PRO and other emerging pollutants, such as bisphenol A (BPA), tetracycline (TC), and norfloxacin (NOR), across various water matrices with less residual toxicity. The coexisting organic matter and ions in natural water promoted the removal of PRO. The enhancement mechanism involved arylbiguanide arms narrowing the band gap and inducing local charge polarization, thereby increasing the separation efficiency of electron<img alt=\\\"single bond\\\" src=\\\"https://sdfestaticassets-us-east-1.sciencedirectassets.com/shared-assets/55/entities/sbnd.gif\\\" style=\\\"vertical-align:middle\\\"/>hole pairs. This work provides significant insights into the structural design and practical applications of COFs for purifying water.\",\"PeriodicalId\":361,\"journal\":{\"name\":\"Journal of Hazardous Materials\",\"volume\":\"237 1\",\"pages\":\"\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2025-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hazardous Materials\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jhazmat.2024.137073\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2024.137073","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
In situ self-cleaning removal of emerging organic contaminants with covalent organic framework armed with arylbiguanide
An in situ self-cleaning covalent organic framework featuring arylbiguanide arms (Aryl-BIG-COF) was first developed to remove emerging organic pollutants such as propranolol (PRO) from water. The main breakthroughs addressed the scarcity of functional active sites, the impracticality of ex situ regeneration, and the rapid recombination of electronhole pairs in the application of COFs. Owing to the directional capture ability and electronic structure regulation of the arylbiguanide arms, the adsorption capacity and photocatalytic degradation rate of the newly synthesized COF increased by nearly four and seven times, respectively. Its self-cleaning ability, driven by the photocatalytic regeneration of active sites, enabled in situ removal of PRO and sustained over 90% removal efficiency after six cycles. Moreover, it demonstrated broad applicability for removing PRO and other emerging pollutants, such as bisphenol A (BPA), tetracycline (TC), and norfloxacin (NOR), across various water matrices with less residual toxicity. The coexisting organic matter and ions in natural water promoted the removal of PRO. The enhancement mechanism involved arylbiguanide arms narrowing the band gap and inducing local charge polarization, thereby increasing the separation efficiency of electronhole pairs. This work provides significant insights into the structural design and practical applications of COFs for purifying water.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.