多条件单细胞数据的潜嵌入多元回归分析

IF 31.7 1区 生物学 Q1 GENETICS & HEREDITY
Constantin Ahlmann-Eltze, Wolfgang Huber
{"title":"多条件单细胞数据的潜嵌入多元回归分析","authors":"Constantin Ahlmann-Eltze, Wolfgang Huber","doi":"10.1038/s41588-024-01996-0","DOIUrl":null,"url":null,"abstract":"<p>Identifying gene expression differences in heterogeneous tissues across conditions is a fundamental biological task, enabled by multi-condition single-cell RNA sequencing (RNA-seq). Current data analysis approaches divide the constituent cells into clusters meant to represent cell types, but such discrete categorization tends to be an unsatisfactory model of the underlying biology. Here, we introduce latent embedding multivariate regression (LEMUR), a model that operates without, or before, commitment to discrete categorization. LEMUR (1) integrates data from different conditions, (2) predicts each cell’s gene expression changes as a function of the conditions and its position in latent space and (3) for each gene, identifies a compact neighborhood of cells with consistent differential expression. We apply LEMUR to cancer, zebrafish development and spatial gradients in Alzheimer’s disease, demonstrating its broad applicability.</p>","PeriodicalId":18985,"journal":{"name":"Nature genetics","volume":"1 1","pages":""},"PeriodicalIF":31.7000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of multi-condition single-cell data with latent embedding multivariate regression\",\"authors\":\"Constantin Ahlmann-Eltze, Wolfgang Huber\",\"doi\":\"10.1038/s41588-024-01996-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Identifying gene expression differences in heterogeneous tissues across conditions is a fundamental biological task, enabled by multi-condition single-cell RNA sequencing (RNA-seq). Current data analysis approaches divide the constituent cells into clusters meant to represent cell types, but such discrete categorization tends to be an unsatisfactory model of the underlying biology. Here, we introduce latent embedding multivariate regression (LEMUR), a model that operates without, or before, commitment to discrete categorization. LEMUR (1) integrates data from different conditions, (2) predicts each cell’s gene expression changes as a function of the conditions and its position in latent space and (3) for each gene, identifies a compact neighborhood of cells with consistent differential expression. We apply LEMUR to cancer, zebrafish development and spatial gradients in Alzheimer’s disease, demonstrating its broad applicability.</p>\",\"PeriodicalId\":18985,\"journal\":{\"name\":\"Nature genetics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":31.7000,\"publicationDate\":\"2025-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41588-024-01996-0\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41588-024-01996-0","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

通过多条件单细胞RNA测序(RNA-seq),鉴定异质组织在不同条件下的基因表达差异是一项基本的生物学任务。目前的数据分析方法将组成细胞分成簇来代表细胞类型,但这种离散的分类往往是一个不令人满意的潜在生物学模型。在这里,我们引入了潜嵌入多元回归(LEMUR),这是一种没有或之前承诺进行离散分类的模型。LEMUR(1)整合来自不同条件的数据;(2)预测每个细胞的基因表达随条件及其在潜伏空间中的位置而变化;(3)对于每个基因,识别出具有一致差异表达的紧凑细胞邻居。我们将LEMUR应用于癌症、斑马鱼发育和阿尔茨海默病的空间梯度,证明了其广泛的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Analysis of multi-condition single-cell data with latent embedding multivariate regression

Analysis of multi-condition single-cell data with latent embedding multivariate regression

Identifying gene expression differences in heterogeneous tissues across conditions is a fundamental biological task, enabled by multi-condition single-cell RNA sequencing (RNA-seq). Current data analysis approaches divide the constituent cells into clusters meant to represent cell types, but such discrete categorization tends to be an unsatisfactory model of the underlying biology. Here, we introduce latent embedding multivariate regression (LEMUR), a model that operates without, or before, commitment to discrete categorization. LEMUR (1) integrates data from different conditions, (2) predicts each cell’s gene expression changes as a function of the conditions and its position in latent space and (3) for each gene, identifies a compact neighborhood of cells with consistent differential expression. We apply LEMUR to cancer, zebrafish development and spatial gradients in Alzheimer’s disease, demonstrating its broad applicability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature genetics
Nature genetics 生物-遗传学
CiteScore
43.00
自引率
2.60%
发文量
241
审稿时长
3 months
期刊介绍: Nature Genetics publishes the very highest quality research in genetics. It encompasses genetic and functional genomic studies on human and plant traits and on other model organisms. Current emphasis is on the genetic basis for common and complex diseases and on the functional mechanism, architecture and evolution of gene networks, studied by experimental perturbation. Integrative genetic topics comprise, but are not limited to: -Genes in the pathology of human disease -Molecular analysis of simple and complex genetic traits -Cancer genetics -Agricultural genomics -Developmental genetics -Regulatory variation in gene expression -Strategies and technologies for extracting function from genomic data -Pharmacological genomics -Genome evolution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信