一种受深海玻璃海绵启发的过滤器,用于湍流下的油污清理

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Yuan Yu, Chi Ding, Jinna Zhang, Nanqi Ren, Chuyang Y. Tang, Shijie You
{"title":"一种受深海玻璃海绵启发的过滤器,用于湍流下的油污清理","authors":"Yuan Yu, Chi Ding, Jinna Zhang, Nanqi Ren, Chuyang Y. Tang, Shijie You","doi":"10.1038/s41467-024-55587-y","DOIUrl":null,"url":null,"abstract":"<p>Oil spill disasters lead to widespread and long-lasting social, economical, environmental and ecological impacts. Technical challenges remain for conventional static adsorption due to hydrodynamic instability under complex water-flow conditions, which results in low oil-capture efficiency, time delay and oil escape. To address this issue, we design a vortex-anchored filter inspired by the anatomy of deep-sea glass sponges (<i>E. aspergillum</i>) by mimicking their exceptional skeletal features and filter-feeding patterns. Results demonstrate that the vortex-anchored filter can retain external turbulent-flow kinetic energy in low-speed vortical flow with small Kolmogorov microscale (85 μm) in the cavity of skeleton, leading to enhanced interfacial mass transfer and residence time by physical field synergy. It improves hydrodynamic stability by reducing Reynolds stresses in nearly quiescent wake flow. The vortex-anchored filter can realize &gt;97% capture of floating, underwater and emulsified oils stably at Reynolds numbers ranging from subcritical to supercritical regimes. This study not only highlights the importance of vortex-anchored mechanism in enhancing interfacial mass transfer and hydrodynamic stability during oil capture beyond previously known benefits of increased residence time, but also represents a paradigm shift to advance biophysically inspired strategies for in-situ, dynamic and robust cleanup of spilled oil, environmental remediation and resource recovery.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"37 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A filter inspired by deep-sea glass sponges for oil cleanup under turbulent flow\",\"authors\":\"Yuan Yu, Chi Ding, Jinna Zhang, Nanqi Ren, Chuyang Y. Tang, Shijie You\",\"doi\":\"10.1038/s41467-024-55587-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Oil spill disasters lead to widespread and long-lasting social, economical, environmental and ecological impacts. Technical challenges remain for conventional static adsorption due to hydrodynamic instability under complex water-flow conditions, which results in low oil-capture efficiency, time delay and oil escape. To address this issue, we design a vortex-anchored filter inspired by the anatomy of deep-sea glass sponges (<i>E. aspergillum</i>) by mimicking their exceptional skeletal features and filter-feeding patterns. Results demonstrate that the vortex-anchored filter can retain external turbulent-flow kinetic energy in low-speed vortical flow with small Kolmogorov microscale (85 μm) in the cavity of skeleton, leading to enhanced interfacial mass transfer and residence time by physical field synergy. It improves hydrodynamic stability by reducing Reynolds stresses in nearly quiescent wake flow. The vortex-anchored filter can realize &gt;97% capture of floating, underwater and emulsified oils stably at Reynolds numbers ranging from subcritical to supercritical regimes. This study not only highlights the importance of vortex-anchored mechanism in enhancing interfacial mass transfer and hydrodynamic stability during oil capture beyond previously known benefits of increased residence time, but also represents a paradigm shift to advance biophysically inspired strategies for in-situ, dynamic and robust cleanup of spilled oil, environmental remediation and resource recovery.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-024-55587-y\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-55587-y","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

溢油灾害造成广泛而持久的社会、经济、环境和生态影响。由于复杂水流条件下流体动力学的不稳定性,传统的静态吸附仍然存在技术挑战,导致捕油效率低、时间延迟和油泄漏。为了解决这个问题,我们设计了一个涡流锚定过滤器,灵感来自深海玻璃海绵(E. aspergillum)的解剖结构,通过模仿其特殊的骨骼特征和过滤进食模式。结果表明:在85 μm Kolmogorov微尺度的低速涡流中,涡旋锚定过滤器能有效地保留外部湍流动能,通过物理场协同作用增强了界面传质和停留时间;它通过减少几乎静止尾流中的雷诺应力来提高水动力稳定性。在亚临界到超临界的雷诺数范围内,涡流锚定过滤器可以稳定地捕获97%的浮油、水下油和乳化油。该研究不仅强调了涡旋锚定机制在提高捕油过程中界面传质和流体动力稳定性方面的重要性,超出了先前已知的增加停留时间的好处,而且还代表了一种范式转变,即推进生物物理启发的原位、动态和强大的溢油清理、环境修复和资源恢复策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A filter inspired by deep-sea glass sponges for oil cleanup under turbulent flow

A filter inspired by deep-sea glass sponges for oil cleanup under turbulent flow

Oil spill disasters lead to widespread and long-lasting social, economical, environmental and ecological impacts. Technical challenges remain for conventional static adsorption due to hydrodynamic instability under complex water-flow conditions, which results in low oil-capture efficiency, time delay and oil escape. To address this issue, we design a vortex-anchored filter inspired by the anatomy of deep-sea glass sponges (E. aspergillum) by mimicking their exceptional skeletal features and filter-feeding patterns. Results demonstrate that the vortex-anchored filter can retain external turbulent-flow kinetic energy in low-speed vortical flow with small Kolmogorov microscale (85 μm) in the cavity of skeleton, leading to enhanced interfacial mass transfer and residence time by physical field synergy. It improves hydrodynamic stability by reducing Reynolds stresses in nearly quiescent wake flow. The vortex-anchored filter can realize >97% capture of floating, underwater and emulsified oils stably at Reynolds numbers ranging from subcritical to supercritical regimes. This study not only highlights the importance of vortex-anchored mechanism in enhancing interfacial mass transfer and hydrodynamic stability during oil capture beyond previously known benefits of increased residence time, but also represents a paradigm shift to advance biophysically inspired strategies for in-situ, dynamic and robust cleanup of spilled oil, environmental remediation and resource recovery.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信