单个等位基因的变异驱动不同水稻亚种对二氧化碳浓度升高的不同产量反应

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Yunlong Liu, Siyu Zhang, Haoyu Qian, Chengbo Shen, Shuijin Hu, Weijian Zhang, Yong Wang, Shan Huang, Songhan Wang, Zhenghui Liu, Ganghua Li, Xiangdong Fu, Yanfeng Ding, Shan Li, Kees Jan van Groenigen, Yu Jiang
{"title":"单个等位基因的变异驱动不同水稻亚种对二氧化碳浓度升高的不同产量反应","authors":"Yunlong Liu, Siyu Zhang, Haoyu Qian, Chengbo Shen, Shuijin Hu, Weijian Zhang, Yong Wang, Shan Huang, Songhan Wang, Zhenghui Liu, Ganghua Li, Xiangdong Fu, Yanfeng Ding, Shan Li, Kees Jan van Groenigen, Yu Jiang","doi":"10.1038/s41467-024-55809-3","DOIUrl":null,"url":null,"abstract":"<p>Rising atmospheric CO<sub>2</sub> generally increases yield of <i>indica</i> rice, one of the two main Asian cultivated rice subspecies, more strongly than <i>japonica</i> rice, the other main subspecies. The molecular mechanisms driving this difference remain unclear, limiting the potential of future rice yield increases through breeding efforts. Here, we show that between-species variation in the <i>DNR1</i> (<i>DULL NITROGEN RESPONSE1</i>) allele, a regulator of nitrate-use efficiency in rice plants, explains the divergent response to elevated atmospheric CO<sub>2</sub> (eCO<sub>2</sub>) conditions. eCO<sub>2</sub> increased rice yield by 22.8–32.3% in plants carrying or mimicking the <i>indica DNR1</i> allele, but only by 3.6–11.1% in plants carrying the <i>japonica DNR1</i> allele. Rice plants carrying or mimicking the <i>indica DNR1</i> allele exhibit decreased eCO<sub>2</sub>-responsive transcription and protein abundance of DNR1, which activates genes involved in nitrate transport and assimilation, driving the increase in plant growth. Our findings identify the <i>indica DNR1</i> gene as a key breeding resource for sustainably enhancing nitrate uptake and rice yields in <i>japonica</i> varieties, potentially contributing to global food security as atmospheric CO<sub>2</sub> levels continue to increase.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"11 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variation in a single allele drives divergent yield responses to elevated CO2 between rice subspecies\",\"authors\":\"Yunlong Liu, Siyu Zhang, Haoyu Qian, Chengbo Shen, Shuijin Hu, Weijian Zhang, Yong Wang, Shan Huang, Songhan Wang, Zhenghui Liu, Ganghua Li, Xiangdong Fu, Yanfeng Ding, Shan Li, Kees Jan van Groenigen, Yu Jiang\",\"doi\":\"10.1038/s41467-024-55809-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Rising atmospheric CO<sub>2</sub> generally increases yield of <i>indica</i> rice, one of the two main Asian cultivated rice subspecies, more strongly than <i>japonica</i> rice, the other main subspecies. The molecular mechanisms driving this difference remain unclear, limiting the potential of future rice yield increases through breeding efforts. Here, we show that between-species variation in the <i>DNR1</i> (<i>DULL NITROGEN RESPONSE1</i>) allele, a regulator of nitrate-use efficiency in rice plants, explains the divergent response to elevated atmospheric CO<sub>2</sub> (eCO<sub>2</sub>) conditions. eCO<sub>2</sub> increased rice yield by 22.8–32.3% in plants carrying or mimicking the <i>indica DNR1</i> allele, but only by 3.6–11.1% in plants carrying the <i>japonica DNR1</i> allele. Rice plants carrying or mimicking the <i>indica DNR1</i> allele exhibit decreased eCO<sub>2</sub>-responsive transcription and protein abundance of DNR1, which activates genes involved in nitrate transport and assimilation, driving the increase in plant growth. Our findings identify the <i>indica DNR1</i> gene as a key breeding resource for sustainably enhancing nitrate uptake and rice yields in <i>japonica</i> varieties, potentially contributing to global food security as atmospheric CO<sub>2</sub> levels continue to increase.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2025-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-024-55809-3\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-55809-3","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

大气中二氧化碳浓度的升高通常会使籼稻(亚洲两大栽培水稻亚种之一)的产量增加,其增加幅度要大于另一主要亚种粳稻。导致这种差异的分子机制尚不清楚,这限制了未来通过育种努力提高水稻产量的潜力。在这里,我们发现DNR1(钝氮应答1)等位基因(水稻植物中硝酸盐利用效率的调节因子)在物种间的差异解释了对升高的大气CO2 (eCO2)条件的不同响应。在携带或模仿籼稻DNR1等位基因的植株上,eCO2的增产率为22.8 ~ 32.3%,而在携带粳稻DNR1等位基因的植株上,增产率仅为3.6 ~ 11.1%。携带或模仿籼稻DNR1等位基因的水稻植株表现出eco2响应转录和DNR1蛋白丰度的降低,DNR1激活了参与硝酸盐运输和同化的基因,推动了植物生长的增加。我们的研究结果确定了籼稻DNR1基因是可持续提高粳稻品种硝酸盐吸收和水稻产量的关键育种资源,可能在大气二氧化碳水平持续增加的情况下为全球粮食安全做出贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Variation in a single allele drives divergent yield responses to elevated CO2 between rice subspecies

Variation in a single allele drives divergent yield responses to elevated CO2 between rice subspecies

Rising atmospheric CO2 generally increases yield of indica rice, one of the two main Asian cultivated rice subspecies, more strongly than japonica rice, the other main subspecies. The molecular mechanisms driving this difference remain unclear, limiting the potential of future rice yield increases through breeding efforts. Here, we show that between-species variation in the DNR1 (DULL NITROGEN RESPONSE1) allele, a regulator of nitrate-use efficiency in rice plants, explains the divergent response to elevated atmospheric CO2 (eCO2) conditions. eCO2 increased rice yield by 22.8–32.3% in plants carrying or mimicking the indica DNR1 allele, but only by 3.6–11.1% in plants carrying the japonica DNR1 allele. Rice plants carrying or mimicking the indica DNR1 allele exhibit decreased eCO2-responsive transcription and protein abundance of DNR1, which activates genes involved in nitrate transport and assimilation, driving the increase in plant growth. Our findings identify the indica DNR1 gene as a key breeding resource for sustainably enhancing nitrate uptake and rice yields in japonica varieties, potentially contributing to global food security as atmospheric CO2 levels continue to increase.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信