纳米C60薄膜的大面积转移

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-01-02 DOI:10.1021/acsnano.4c10878
Jack Hogan, Chengyi Liu, Hui Zhang, Aliyu Salisu, Dan Villamanca, Jianghui Zheng, Jacob W. Martin, Alister J. Page, Anita W. Y. Ho-Baillie, Dong Jun Kim, Sam Chen
{"title":"纳米C60薄膜的大面积转移","authors":"Jack Hogan, Chengyi Liu, Hui Zhang, Aliyu Salisu, Dan Villamanca, Jianghui Zheng, Jacob W. Martin, Alister J. Page, Anita W. Y. Ho-Baillie, Dong Jun Kim, Sam Chen","doi":"10.1021/acsnano.4c10878","DOIUrl":null,"url":null,"abstract":"Fullerenes, with well-defined molecular structures and high scalability, hold promise as fundamental building blocks for creating a variety of carbon materials. The fabrication and transfer of large-area films with precisely controlled thicknesses and morphologies on desired surfaces are crucial for designing and developing fullerene-based materials and devices. In this work, we present strategies for solid-state transferring C<sub>60</sub> molecular nanometer-thin films, with dimensions of centimeters in lateral size and thicknesses controlled in the range of 1–20 nm, onto various substrates. Furthermore, we have successfully fabricated centimeter-wide graphene/C<sub>60</sub>/graphene heterostructures through layer-by-layer stacking of C<sub>60</sub> and graphene films. This transfer methodology is versatile, allowing for the complete transfer of chemically modified C<sub>60</sub> films, including oxygenated C<sub>60</sub> films and C<sub>60</sub>Pd<sub><i>n</i></sub> organometallic polymer films. Additionally, direct solid-state transfer of C<sub>60</sub> and C<sub>60</sub>Pd<sub><i>n</i></sub> films onto electrode surfaces has enabled their electrocatalytic performance for the hydrogen evolution reaction to be probed directly. This thin-film transfer strategy allows precise manipulation of large-area, ultrathin C<sub>60</sub> films on various substrates, providing a platform for fullerene chemistry and the experimental synthesis of artificial carbon structures.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"10 1","pages":""},"PeriodicalIF":16.0000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large-Area Transfer of Nanometer-Thin C60 Films\",\"authors\":\"Jack Hogan, Chengyi Liu, Hui Zhang, Aliyu Salisu, Dan Villamanca, Jianghui Zheng, Jacob W. Martin, Alister J. Page, Anita W. Y. Ho-Baillie, Dong Jun Kim, Sam Chen\",\"doi\":\"10.1021/acsnano.4c10878\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fullerenes, with well-defined molecular structures and high scalability, hold promise as fundamental building blocks for creating a variety of carbon materials. The fabrication and transfer of large-area films with precisely controlled thicknesses and morphologies on desired surfaces are crucial for designing and developing fullerene-based materials and devices. In this work, we present strategies for solid-state transferring C<sub>60</sub> molecular nanometer-thin films, with dimensions of centimeters in lateral size and thicknesses controlled in the range of 1–20 nm, onto various substrates. Furthermore, we have successfully fabricated centimeter-wide graphene/C<sub>60</sub>/graphene heterostructures through layer-by-layer stacking of C<sub>60</sub> and graphene films. This transfer methodology is versatile, allowing for the complete transfer of chemically modified C<sub>60</sub> films, including oxygenated C<sub>60</sub> films and C<sub>60</sub>Pd<sub><i>n</i></sub> organometallic polymer films. Additionally, direct solid-state transfer of C<sub>60</sub> and C<sub>60</sub>Pd<sub><i>n</i></sub> films onto electrode surfaces has enabled their electrocatalytic performance for the hydrogen evolution reaction to be probed directly. This thin-film transfer strategy allows precise manipulation of large-area, ultrathin C<sub>60</sub> films on various substrates, providing a platform for fullerene chemistry and the experimental synthesis of artificial carbon structures.\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnano.4c10878\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c10878","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

富勒烯具有明确的分子结构和高可扩展性,有望成为制造各种碳材料的基本基石。在所需表面上精确控制厚度和形态的大面积薄膜的制造和转移对于设计和开发富勒烯基材料和器件至关重要。在这项工作中,我们提出了在各种衬底上固态转移C60分子纳米薄膜的策略,这些薄膜的横向尺寸为厘米,厚度控制在1-20纳米范围内。此外,我们还成功地通过C60和石墨烯薄膜的逐层堆叠制备了厘米宽的石墨烯/C60/石墨烯异质结构。这种转移方法是通用的,允许化学改性C60薄膜的完全转移,包括氧化C60薄膜和C60Pdn有机金属聚合物薄膜。此外,将C60和C60Pdn薄膜直接固态转移到电极表面,可以直接探测其析氢反应的电催化性能。这种薄膜转移策略允许在各种衬底上精确操作大面积超薄C60薄膜,为富勒烯化学和人工碳结构的实验合成提供了平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Large-Area Transfer of Nanometer-Thin C60 Films

Large-Area Transfer of Nanometer-Thin C60 Films
Fullerenes, with well-defined molecular structures and high scalability, hold promise as fundamental building blocks for creating a variety of carbon materials. The fabrication and transfer of large-area films with precisely controlled thicknesses and morphologies on desired surfaces are crucial for designing and developing fullerene-based materials and devices. In this work, we present strategies for solid-state transferring C60 molecular nanometer-thin films, with dimensions of centimeters in lateral size and thicknesses controlled in the range of 1–20 nm, onto various substrates. Furthermore, we have successfully fabricated centimeter-wide graphene/C60/graphene heterostructures through layer-by-layer stacking of C60 and graphene films. This transfer methodology is versatile, allowing for the complete transfer of chemically modified C60 films, including oxygenated C60 films and C60Pdn organometallic polymer films. Additionally, direct solid-state transfer of C60 and C60Pdn films onto electrode surfaces has enabled their electrocatalytic performance for the hydrogen evolution reaction to be probed directly. This thin-film transfer strategy allows precise manipulation of large-area, ultrathin C60 films on various substrates, providing a platform for fullerene chemistry and the experimental synthesis of artificial carbon structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信