Yang Liu, Xiaoting Chen, Xueqin Tan, Yeqian Huang, Wen Zhang, Zhicun Wang, Li Yang, Yunbing Wang, Zhengyong Li and Xingdong Zhang
{"title":"双网状水凝胶包封转基因去分化软骨细胞用于耳软骨再生。","authors":"Yang Liu, Xiaoting Chen, Xueqin Tan, Yeqian Huang, Wen Zhang, Zhicun Wang, Li Yang, Yunbing Wang, Zhengyong Li and Xingdong Zhang","doi":"10.1039/D4TB02352H","DOIUrl":null,"url":null,"abstract":"<p >Microtia profoundly affects patients' appearance and psychological well-being. Tissue engineering ear cartilage scaffolds have emerged as the most promising solution for ear reconstruction. However, constructing tissue engineering ear cartilage scaffolds requires multiple passaging of chondrocytes, resulting in their dedifferentiation and loss of their special phenotypes and functions. To tackle these issues, here we employ guanidinobenzoic acid (GBA) modified generation 5 polyamidoamine (PAMAM) dendrimers (PG) as a Runx1 plasmid carrier to construct PG/pRunx1 polyplex nanoparticles. The PG/pRunx1 polyplexes are transfected into human auricular chondrocytes, significantly mitigating chondrocyte dedifferentiation and enhancing cartilage regeneration during the <em>in vitro</em> culture. Furthermore, we develop highly porous double-network hydrogels based on methacrylate-functionalized and oxidized chondroitin sulfate and carbohydrazide-modified gelatin and the hydrogels possessed both dynamic adaptability and mechanical support characteristics by reversible dynamic covalent crosslinking and static covalent crosslinking, serving as an ideal scaffold for tissue engineering. Consequently, chondrocytes treated with PG/pRunx1 polyplex nanoparticles are incorporated into the hydrogels to construct tissue-engineered auricular cartilage scaffolds. After subcutaneous implantation in nude mice, the scaffolds containing chondrocytes treated with PG/pRunx1 nanoparticles showed more mature cartilaginous tissue, characterized by prominent ECM deposition and enhanced chondrogenesis. Therefore, this research provides a novel strategy for the development of tissue-engineered auricular cartilage scaffolds.</p>","PeriodicalId":83,"journal":{"name":"Journal of Materials Chemistry B","volume":" 5","pages":" 1823-1844"},"PeriodicalIF":6.1000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Double network hydrogels encapsulating genetically modified dedifferentiated chondrocytes for auricular cartilage regeneration†\",\"authors\":\"Yang Liu, Xiaoting Chen, Xueqin Tan, Yeqian Huang, Wen Zhang, Zhicun Wang, Li Yang, Yunbing Wang, Zhengyong Li and Xingdong Zhang\",\"doi\":\"10.1039/D4TB02352H\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Microtia profoundly affects patients' appearance and psychological well-being. Tissue engineering ear cartilage scaffolds have emerged as the most promising solution for ear reconstruction. However, constructing tissue engineering ear cartilage scaffolds requires multiple passaging of chondrocytes, resulting in their dedifferentiation and loss of their special phenotypes and functions. To tackle these issues, here we employ guanidinobenzoic acid (GBA) modified generation 5 polyamidoamine (PAMAM) dendrimers (PG) as a Runx1 plasmid carrier to construct PG/pRunx1 polyplex nanoparticles. The PG/pRunx1 polyplexes are transfected into human auricular chondrocytes, significantly mitigating chondrocyte dedifferentiation and enhancing cartilage regeneration during the <em>in vitro</em> culture. Furthermore, we develop highly porous double-network hydrogels based on methacrylate-functionalized and oxidized chondroitin sulfate and carbohydrazide-modified gelatin and the hydrogels possessed both dynamic adaptability and mechanical support characteristics by reversible dynamic covalent crosslinking and static covalent crosslinking, serving as an ideal scaffold for tissue engineering. Consequently, chondrocytes treated with PG/pRunx1 polyplex nanoparticles are incorporated into the hydrogels to construct tissue-engineered auricular cartilage scaffolds. After subcutaneous implantation in nude mice, the scaffolds containing chondrocytes treated with PG/pRunx1 nanoparticles showed more mature cartilaginous tissue, characterized by prominent ECM deposition and enhanced chondrogenesis. Therefore, this research provides a novel strategy for the development of tissue-engineered auricular cartilage scaffolds.</p>\",\"PeriodicalId\":83,\"journal\":{\"name\":\"Journal of Materials Chemistry B\",\"volume\":\" 5\",\"pages\":\" 1823-1844\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/tb/d4tb02352h\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tb/d4tb02352h","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Microtia profoundly affects patients' appearance and psychological well-being. Tissue engineering ear cartilage scaffolds have emerged as the most promising solution for ear reconstruction. However, constructing tissue engineering ear cartilage scaffolds requires multiple passaging of chondrocytes, resulting in their dedifferentiation and loss of their special phenotypes and functions. To tackle these issues, here we employ guanidinobenzoic acid (GBA) modified generation 5 polyamidoamine (PAMAM) dendrimers (PG) as a Runx1 plasmid carrier to construct PG/pRunx1 polyplex nanoparticles. The PG/pRunx1 polyplexes are transfected into human auricular chondrocytes, significantly mitigating chondrocyte dedifferentiation and enhancing cartilage regeneration during the in vitro culture. Furthermore, we develop highly porous double-network hydrogels based on methacrylate-functionalized and oxidized chondroitin sulfate and carbohydrazide-modified gelatin and the hydrogels possessed both dynamic adaptability and mechanical support characteristics by reversible dynamic covalent crosslinking and static covalent crosslinking, serving as an ideal scaffold for tissue engineering. Consequently, chondrocytes treated with PG/pRunx1 polyplex nanoparticles are incorporated into the hydrogels to construct tissue-engineered auricular cartilage scaffolds. After subcutaneous implantation in nude mice, the scaffolds containing chondrocytes treated with PG/pRunx1 nanoparticles showed more mature cartilaginous tissue, characterized by prominent ECM deposition and enhanced chondrogenesis. Therefore, this research provides a novel strategy for the development of tissue-engineered auricular cartilage scaffolds.
期刊介绍:
Journal of Materials Chemistry A, B & C cover high quality studies across all fields of materials chemistry. The journals focus on those theoretical or experimental studies that report new understanding, applications, properties and synthesis of materials. Journal of Materials Chemistry A, B & C are separated by the intended application of the material studied. Broadly, applications in energy and sustainability are of interest to Journal of Materials Chemistry A, applications in biology and medicine are of interest to Journal of Materials Chemistry B, and applications in optical, magnetic and electronic devices are of interest to Journal of Materials Chemistry C.Journal of Materials Chemistry B is a Transformative Journal and Plan S compliant. Example topic areas within the scope of Journal of Materials Chemistry B are listed below. This list is neither exhaustive nor exclusive:
Antifouling coatings
Biocompatible materials
Bioelectronics
Bioimaging
Biomimetics
Biomineralisation
Bionics
Biosensors
Diagnostics
Drug delivery
Gene delivery
Immunobiology
Nanomedicine
Regenerative medicine & Tissue engineering
Scaffolds
Soft robotics
Stem cells
Therapeutic devices