靶向雌激素相关受体减轻肿瘤抵抗:一种桥接细胞能量代谢的综合方法。

IF 9.7 1区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yuan Ren , Xiaodan Mao , Wenyu Lin , Yi Chen , Rongfeng Chen , Pengming Sun
{"title":"靶向雌激素相关受体减轻肿瘤抵抗:一种桥接细胞能量代谢的综合方法。","authors":"Yuan Ren ,&nbsp;Xiaodan Mao ,&nbsp;Wenyu Lin ,&nbsp;Yi Chen ,&nbsp;Rongfeng Chen ,&nbsp;Pengming Sun","doi":"10.1016/j.bbcan.2024.189256","DOIUrl":null,"url":null,"abstract":"<div><div>The war between humanity and malignant tumors has been ongoing, with continuous advancements in classic chemotherapy and radiotherapy regimens, targeted drugs, endocrine therapy, and immunotherapy. However, tumor cells can develop primary or secondary resistance to these treatment options, making the issue of tumor resistance a major factor affecting patient prognosis and leading to recurrence. Estrogen-related receptors (ERRs) are members of the nuclear receptor superfamily, primarily involved in regulating glucose, lipid, and amino acid metabolism, serving as a central hub for intracellular energy metabolism. ERRs not only mediate insulin resistance but also participate in the mechanisms of drug resistance in various tumors, including breast cancer, osteosarcoma, endometrial cancer, lung cancer, and liver cancer, and even mediate resistance to radiation and immunotherapy. They mainly resist tumor treatment methods through metabolic reprogramming within cells, affecting mitochondrial energy metabolism, regulating metabolites such as cholesterol, glutamine, and lactate, or other signaling pathways, or by influencing the immune microenvironment. ERRs are promising targets for addressing the dilemma of tumor resistance. Currently, electrochemical luminescence biosensors for detecting ERRα in bodily fluids have been developed, making large-scale, low-cost detection of ERRα possible. Additionally, targeted inhibitors of ERRs have shown significant effects in suppressing cancer cell proliferation and reversing tumor resistance. This article reviews the research progress of ERRs in tumor resistance, providing important references for developing more effective anti-tumor treatment strategies.</div></div>","PeriodicalId":8782,"journal":{"name":"Biochimica et biophysica acta. Reviews on cancer","volume":"1880 1","pages":"Article 189256"},"PeriodicalIF":9.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Targeting estrogen-related receptors to mitigate tumor resistance: A comprehensive approach to bridging cellular energy metabolism\",\"authors\":\"Yuan Ren ,&nbsp;Xiaodan Mao ,&nbsp;Wenyu Lin ,&nbsp;Yi Chen ,&nbsp;Rongfeng Chen ,&nbsp;Pengming Sun\",\"doi\":\"10.1016/j.bbcan.2024.189256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The war between humanity and malignant tumors has been ongoing, with continuous advancements in classic chemotherapy and radiotherapy regimens, targeted drugs, endocrine therapy, and immunotherapy. However, tumor cells can develop primary or secondary resistance to these treatment options, making the issue of tumor resistance a major factor affecting patient prognosis and leading to recurrence. Estrogen-related receptors (ERRs) are members of the nuclear receptor superfamily, primarily involved in regulating glucose, lipid, and amino acid metabolism, serving as a central hub for intracellular energy metabolism. ERRs not only mediate insulin resistance but also participate in the mechanisms of drug resistance in various tumors, including breast cancer, osteosarcoma, endometrial cancer, lung cancer, and liver cancer, and even mediate resistance to radiation and immunotherapy. They mainly resist tumor treatment methods through metabolic reprogramming within cells, affecting mitochondrial energy metabolism, regulating metabolites such as cholesterol, glutamine, and lactate, or other signaling pathways, or by influencing the immune microenvironment. ERRs are promising targets for addressing the dilemma of tumor resistance. Currently, electrochemical luminescence biosensors for detecting ERRα in bodily fluids have been developed, making large-scale, low-cost detection of ERRα possible. Additionally, targeted inhibitors of ERRs have shown significant effects in suppressing cancer cell proliferation and reversing tumor resistance. This article reviews the research progress of ERRs in tumor resistance, providing important references for developing more effective anti-tumor treatment strategies.</div></div>\",\"PeriodicalId\":8782,\"journal\":{\"name\":\"Biochimica et biophysica acta. Reviews on cancer\",\"volume\":\"1880 1\",\"pages\":\"Article 189256\"},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et biophysica acta. Reviews on cancer\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304419X24001872\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Reviews on cancer","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304419X24001872","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

人类与恶性肿瘤的战争一直在进行,经典的化疗和放疗方案、靶向药物、内分泌治疗、免疫治疗不断取得进展。然而,肿瘤细胞可对这些治疗方案产生原发性或继发性耐药,使肿瘤耐药问题成为影响患者预后和导致复发的主要因素。雌激素相关受体(ERRs)是核受体超家族的成员,主要参与调节葡萄糖、脂质和氨基酸代谢,是细胞内能量代谢的中枢。ERRs不仅介导胰岛素抵抗,还参与多种肿瘤的耐药机制,包括乳腺癌、骨肉瘤、子宫内膜癌、肺癌、肝癌,甚至介导对放射和免疫治疗的耐药。它们主要通过细胞内的代谢重编程,影响线粒体能量代谢,调节胆固醇、谷氨酰胺、乳酸等代谢物或其他信号通路,或通过影响免疫微环境来抵抗肿瘤治疗方法。ERRs是解决肿瘤耐药困境的有希望的靶点。目前,用于检测体液中ERRα的电化学发光生物传感器已经开发出来,使得大规模、低成本检测ERRα成为可能。此外,ers靶向抑制剂在抑制癌细胞增殖和逆转肿瘤耐药方面已显示出显著作用。本文综述了ERRs在肿瘤耐药中的研究进展,为制定更有效的抗肿瘤治疗策略提供重要参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Targeting estrogen-related receptors to mitigate tumor resistance: A comprehensive approach to bridging cellular energy metabolism
The war between humanity and malignant tumors has been ongoing, with continuous advancements in classic chemotherapy and radiotherapy regimens, targeted drugs, endocrine therapy, and immunotherapy. However, tumor cells can develop primary or secondary resistance to these treatment options, making the issue of tumor resistance a major factor affecting patient prognosis and leading to recurrence. Estrogen-related receptors (ERRs) are members of the nuclear receptor superfamily, primarily involved in regulating glucose, lipid, and amino acid metabolism, serving as a central hub for intracellular energy metabolism. ERRs not only mediate insulin resistance but also participate in the mechanisms of drug resistance in various tumors, including breast cancer, osteosarcoma, endometrial cancer, lung cancer, and liver cancer, and even mediate resistance to radiation and immunotherapy. They mainly resist tumor treatment methods through metabolic reprogramming within cells, affecting mitochondrial energy metabolism, regulating metabolites such as cholesterol, glutamine, and lactate, or other signaling pathways, or by influencing the immune microenvironment. ERRs are promising targets for addressing the dilemma of tumor resistance. Currently, electrochemical luminescence biosensors for detecting ERRα in bodily fluids have been developed, making large-scale, low-cost detection of ERRα possible. Additionally, targeted inhibitors of ERRs have shown significant effects in suppressing cancer cell proliferation and reversing tumor resistance. This article reviews the research progress of ERRs in tumor resistance, providing important references for developing more effective anti-tumor treatment strategies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biochimica et biophysica acta. Reviews on cancer
Biochimica et biophysica acta. Reviews on cancer 医学-生化与分子生物学
CiteScore
17.20
自引率
0.00%
发文量
138
审稿时长
33 days
期刊介绍: Biochimica et Biophysica Acta (BBA) - Reviews on Cancer encompasses the entirety of cancer biology and biochemistry, emphasizing oncogenes and tumor suppressor genes, growth-related cell cycle control signaling, carcinogenesis mechanisms, cell transformation, immunologic control mechanisms, genetics of human (mammalian) cancer, control of cell proliferation, genetic and molecular control of organismic development, rational anti-tumor drug design. It publishes mini-reviews and full reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信