Lijun Chen, Guofan Zhu, Alberto Pascual-Garcia, Francisco Dini-Andreote, Jie zheng, Xiaoyue Wang, Shungui Zhou, Yuji Jiang
{"title":"调控玉米产量的碱性磷酸单酯酶产菌多样性动态及网络稳定性研究。","authors":"Lijun Chen, Guofan Zhu, Alberto Pascual-Garcia, Francisco Dini-Andreote, Jie zheng, Xiaoyue Wang, Shungui Zhou, Yuji Jiang","doi":"10.1002/imt2.260","DOIUrl":null,"url":null,"abstract":"<p>Phosphorus, as a nonrenewable resource, plays a crucial role in crop development and productivity. However, the extent to which straw amendments contribute to the dynamics of soil alkaline phosphomonoesterase (ALP)-producing bacterial community and functionality over an extended period remains elusive. Here, we conducted a 7-year long-term field experiment consisting of a no-fertilizer control, a chemical fertilizer treatment, and three straw (straw, straw combined with manure, and straw biochar) treatments. Our results indicated that straw amendments significantly improved the succession patterns of the ALP-producing bacterial diversity. Simultaneously, straw amendments significantly increased the network stability of the ALP-producing bacteria over time, as evidenced by higher network robustness, a higher ratio of negative to positive cohesion, and lower network vulnerability. High dynamic and stability of ALP-producing bacterial community generated high ALP activity which further increased soil Phosphorus (P) availability as well as maize productivity.\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":73342,"journal":{"name":"iMeta","volume":"3 6","pages":""},"PeriodicalIF":23.7000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11683463/pdf/","citationCount":"0","resultStr":"{\"title\":\"Unraveling the diversity dynamics and network stability of alkaline phosphomonoesterase-producing bacteria in modulating maize yield\",\"authors\":\"Lijun Chen, Guofan Zhu, Alberto Pascual-Garcia, Francisco Dini-Andreote, Jie zheng, Xiaoyue Wang, Shungui Zhou, Yuji Jiang\",\"doi\":\"10.1002/imt2.260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Phosphorus, as a nonrenewable resource, plays a crucial role in crop development and productivity. However, the extent to which straw amendments contribute to the dynamics of soil alkaline phosphomonoesterase (ALP)-producing bacterial community and functionality over an extended period remains elusive. Here, we conducted a 7-year long-term field experiment consisting of a no-fertilizer control, a chemical fertilizer treatment, and three straw (straw, straw combined with manure, and straw biochar) treatments. Our results indicated that straw amendments significantly improved the succession patterns of the ALP-producing bacterial diversity. Simultaneously, straw amendments significantly increased the network stability of the ALP-producing bacteria over time, as evidenced by higher network robustness, a higher ratio of negative to positive cohesion, and lower network vulnerability. High dynamic and stability of ALP-producing bacterial community generated high ALP activity which further increased soil Phosphorus (P) availability as well as maize productivity.\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\",\"PeriodicalId\":73342,\"journal\":{\"name\":\"iMeta\",\"volume\":\"3 6\",\"pages\":\"\"},\"PeriodicalIF\":23.7000,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11683463/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"iMeta\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/imt2.260\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"iMeta","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/imt2.260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Unraveling the diversity dynamics and network stability of alkaline phosphomonoesterase-producing bacteria in modulating maize yield
Phosphorus, as a nonrenewable resource, plays a crucial role in crop development and productivity. However, the extent to which straw amendments contribute to the dynamics of soil alkaline phosphomonoesterase (ALP)-producing bacterial community and functionality over an extended period remains elusive. Here, we conducted a 7-year long-term field experiment consisting of a no-fertilizer control, a chemical fertilizer treatment, and three straw (straw, straw combined with manure, and straw biochar) treatments. Our results indicated that straw amendments significantly improved the succession patterns of the ALP-producing bacterial diversity. Simultaneously, straw amendments significantly increased the network stability of the ALP-producing bacteria over time, as evidenced by higher network robustness, a higher ratio of negative to positive cohesion, and lower network vulnerability. High dynamic and stability of ALP-producing bacterial community generated high ALP activity which further increased soil Phosphorus (P) availability as well as maize productivity.