探讨数字幻影模型在乳房断层成像虚拟成像试验中的影响。

IF 1.9 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Journal of Medical Imaging Pub Date : 2025-01-01 Epub Date: 2024-12-31 DOI:10.1117/1.JMI.12.1.015501
Amar Kavuri, Mini Das
{"title":"探讨数字幻影模型在乳房断层成像虚拟成像试验中的影响。","authors":"Amar Kavuri, Mini Das","doi":"10.1117/1.JMI.12.1.015501","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Digital phantoms are one of the key components of virtual imaging trials (VITs) that aim to assess and optimize new medical imaging systems and algorithms. However, these phantoms vary in their voxel resolution, appearance, and structural details. We investigate whether and how variations between digital phantoms influence system optimization with digital breast tomosynthesis (DBT) as a chosen modality.</p><p><strong>Methods: </strong>We selected widely used and open-access digital breast phantoms created with different methods and generated an ensemble of DBT images to test acquisition strategies. Human observer performance was evaluated using localization receiver operating characteristic (LROC) studies for each phantom type. Noise power spectrum and gaze metrics were also employed to compare phantoms and generated images.</p><p><strong>Results: </strong>Our LROC results show that the arc samplings for peak performance were <math><mrow><mo>∼</mo> <mn>2.5</mn> <mtext>  </mtext> <mi>deg</mi></mrow> </math> and 6 deg in Bakic and XCAT breast phantoms, respectively, for the 3-mm lesion detection task and indicate that system optimization outcomes from VITs can vary with phantom types and structural frequency components. In addition, a significant correlation ( <math><mrow><mi>p</mi> <mo><</mo> <mn>0.01</mn></mrow> </math> ) between gaze metrics and diagnostic performance suggests that gaze analysis can be used to understand and evaluate task difficulty in VITs.</p><p><strong>Conclusion: </strong>Our results point to the critical need to evaluate realism in digital phantoms and ensure sufficient structural variations at spatial frequencies relevant to the intended task. Standardizing phantom generation and validation tools may help reduce discrepancies among independently conducted VITs for system or algorithmic optimizations.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"12 1","pages":"015501"},"PeriodicalIF":1.9000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11686409/pdf/","citationCount":"0","resultStr":"{\"title\":\"Examining the influence of digital phantom models in virtual imaging trials for tomographic breast imaging.\",\"authors\":\"Amar Kavuri, Mini Das\",\"doi\":\"10.1117/1.JMI.12.1.015501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Digital phantoms are one of the key components of virtual imaging trials (VITs) that aim to assess and optimize new medical imaging systems and algorithms. However, these phantoms vary in their voxel resolution, appearance, and structural details. We investigate whether and how variations between digital phantoms influence system optimization with digital breast tomosynthesis (DBT) as a chosen modality.</p><p><strong>Methods: </strong>We selected widely used and open-access digital breast phantoms created with different methods and generated an ensemble of DBT images to test acquisition strategies. Human observer performance was evaluated using localization receiver operating characteristic (LROC) studies for each phantom type. Noise power spectrum and gaze metrics were also employed to compare phantoms and generated images.</p><p><strong>Results: </strong>Our LROC results show that the arc samplings for peak performance were <math><mrow><mo>∼</mo> <mn>2.5</mn> <mtext>  </mtext> <mi>deg</mi></mrow> </math> and 6 deg in Bakic and XCAT breast phantoms, respectively, for the 3-mm lesion detection task and indicate that system optimization outcomes from VITs can vary with phantom types and structural frequency components. In addition, a significant correlation ( <math><mrow><mi>p</mi> <mo><</mo> <mn>0.01</mn></mrow> </math> ) between gaze metrics and diagnostic performance suggests that gaze analysis can be used to understand and evaluate task difficulty in VITs.</p><p><strong>Conclusion: </strong>Our results point to the critical need to evaluate realism in digital phantoms and ensure sufficient structural variations at spatial frequencies relevant to the intended task. Standardizing phantom generation and validation tools may help reduce discrepancies among independently conducted VITs for system or algorithmic optimizations.</p>\",\"PeriodicalId\":47707,\"journal\":{\"name\":\"Journal of Medical Imaging\",\"volume\":\"12 1\",\"pages\":\"015501\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11686409/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Imaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1117/1.JMI.12.1.015501\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JMI.12.1.015501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/31 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

目的:数字幻影是虚拟成像试验(VITs)的关键组成部分之一,旨在评估和优化新的医学成像系统和算法。然而,这些幻影在体素分辨率、外观和结构细节上各不相同。我们研究数字幻影之间的差异是否以及如何影响以数字乳房断层合成(DBT)为选择模式的系统优化。方法:选取广泛使用且开放获取的不同方法制作的数字乳房模型,生成DBT图像集合,对采集策略进行测试。使用定位接收器操作特征(LROC)研究评估每个幻影类型的人类观察者的表现。噪声功率谱和凝视指标也被用来比较幻影和生成的图像。结果:我们的LROC结果表明,对于3毫米病变检测任务,在Bakic和XCAT乳房幻影中,峰值性能的电弧采样分别为~ 2.5度和6度,并表明VITs的系统优化结果可能因幻影类型和结构频率成分而异。此外,凝视指标与诊断表现之间的显著相关(p 0.01)表明凝视分析可以用于理解和评估vit中的任务难度。结论:我们的研究结果指出了评估数字幻影真实感的关键需求,并确保在与预期任务相关的空间频率上有足够的结构变化。标准化幻影生成和验证工具可能有助于减少系统或算法优化中独立进行的vit之间的差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Examining the influence of digital phantom models in virtual imaging trials for tomographic breast imaging.

Purpose: Digital phantoms are one of the key components of virtual imaging trials (VITs) that aim to assess and optimize new medical imaging systems and algorithms. However, these phantoms vary in their voxel resolution, appearance, and structural details. We investigate whether and how variations between digital phantoms influence system optimization with digital breast tomosynthesis (DBT) as a chosen modality.

Methods: We selected widely used and open-access digital breast phantoms created with different methods and generated an ensemble of DBT images to test acquisition strategies. Human observer performance was evaluated using localization receiver operating characteristic (LROC) studies for each phantom type. Noise power spectrum and gaze metrics were also employed to compare phantoms and generated images.

Results: Our LROC results show that the arc samplings for peak performance were 2.5    deg and 6 deg in Bakic and XCAT breast phantoms, respectively, for the 3-mm lesion detection task and indicate that system optimization outcomes from VITs can vary with phantom types and structural frequency components. In addition, a significant correlation ( p < 0.01 ) between gaze metrics and diagnostic performance suggests that gaze analysis can be used to understand and evaluate task difficulty in VITs.

Conclusion: Our results point to the critical need to evaluate realism in digital phantoms and ensure sufficient structural variations at spatial frequencies relevant to the intended task. Standardizing phantom generation and validation tools may help reduce discrepancies among independently conducted VITs for system or algorithmic optimizations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Medical Imaging
Journal of Medical Imaging RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
4.10
自引率
4.20%
发文量
0
期刊介绍: JMI covers fundamental and translational research, as well as applications, focused on medical imaging, which continue to yield physical and biomedical advancements in the early detection, diagnostics, and therapy of disease as well as in the understanding of normal. The scope of JMI includes: Imaging physics, Tomographic reconstruction algorithms (such as those in CT and MRI), Image processing and deep learning, Computer-aided diagnosis and quantitative image analysis, Visualization and modeling, Picture archiving and communications systems (PACS), Image perception and observer performance, Technology assessment, Ultrasonic imaging, Image-guided procedures, Digital pathology, Biomedical applications of biomedical imaging. JMI allows for the peer-reviewed communication and archiving of scientific developments, translational and clinical applications, reviews, and recommendations for the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信