一个可解释的机器学习系统,用于有效利用耐用混凝土中的废玻璃,以最大限度地提高碳信用额,实现净零排放。

IF 7.1 2区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Waste management Pub Date : 2025-02-01 Epub Date: 2024-12-31 DOI:10.1016/j.wasman.2024.12.034
Xu Huang, Junhui Huang, Sakdirat Kaewunruen
{"title":"一个可解释的机器学习系统,用于有效利用耐用混凝土中的废玻璃,以最大限度地提高碳信用额,实现净零排放。","authors":"Xu Huang, Junhui Huang, Sakdirat Kaewunruen","doi":"10.1016/j.wasman.2024.12.034","DOIUrl":null,"url":null,"abstract":"<p><p>Recycling waste glass (WG) can be time-consuming, costly, and impractical. However, its incorporation into concrete significantly reduces environmental impact and carbon emissions. This paper introduces machine learning (ML) to civil engineering to optimise WG utilisation in concrete, supporting sustainability objectives. By employing a dataset of 471 experimental samples of waste glass concrete (WGC), various ML algorithms are applied, including Gradient Boosting Regressor (GBR), Random Forest (RF), Support Vector Regression (SVR), Adaptive Boosting (AdaBoost), Deep Neural Network (DNN), and k-Nearest Neighbours (kNN), to predict properties containing compressive strength (CS), alkali-silica reaction (ASR), and saved carbon credits (SCC). The proposed models achieve outstanding prediction performance with Coefficient of determination (R<sup>2</sup>) values of 0.95 for CS, 0.97 for ASR, and 0.99 for SCC using GBR and SVR, demonstrating high prediction accuracy with Root mean square error (RMSE) values of 3.31 MPa for CS, 0.03 % for ASR, and 0.11 for SCC. The SHapley Additive exPlanations (SHAP) analysis is utilised to interpret the model results, ensuring transparency and interpretability of the proposed ML models. The results reveal that the incorporation level of WG is a more significant influencing factor for these properties than the mean size of WG (MSWG).</p>","PeriodicalId":23969,"journal":{"name":"Waste management","volume":"193 ","pages":"539-550"},"PeriodicalIF":7.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An explainable machine learning system for efficient use of waste glasses in durable concrete to maximise carbon credits towards net zero emissions.\",\"authors\":\"Xu Huang, Junhui Huang, Sakdirat Kaewunruen\",\"doi\":\"10.1016/j.wasman.2024.12.034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recycling waste glass (WG) can be time-consuming, costly, and impractical. However, its incorporation into concrete significantly reduces environmental impact and carbon emissions. This paper introduces machine learning (ML) to civil engineering to optimise WG utilisation in concrete, supporting sustainability objectives. By employing a dataset of 471 experimental samples of waste glass concrete (WGC), various ML algorithms are applied, including Gradient Boosting Regressor (GBR), Random Forest (RF), Support Vector Regression (SVR), Adaptive Boosting (AdaBoost), Deep Neural Network (DNN), and k-Nearest Neighbours (kNN), to predict properties containing compressive strength (CS), alkali-silica reaction (ASR), and saved carbon credits (SCC). The proposed models achieve outstanding prediction performance with Coefficient of determination (R<sup>2</sup>) values of 0.95 for CS, 0.97 for ASR, and 0.99 for SCC using GBR and SVR, demonstrating high prediction accuracy with Root mean square error (RMSE) values of 3.31 MPa for CS, 0.03 % for ASR, and 0.11 for SCC. The SHapley Additive exPlanations (SHAP) analysis is utilised to interpret the model results, ensuring transparency and interpretability of the proposed ML models. The results reveal that the incorporation level of WG is a more significant influencing factor for these properties than the mean size of WG (MSWG).</p>\",\"PeriodicalId\":23969,\"journal\":{\"name\":\"Waste management\",\"volume\":\"193 \",\"pages\":\"539-550\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Waste management\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.wasman.2024.12.034\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste management","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.wasman.2024.12.034","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/31 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

回收废玻璃(WG)既耗时又昂贵,而且不切实际。然而,将其掺入混凝土中可以显著减少对环境的影响和碳排放。本文将机器学习(ML)引入土木工程,以优化混凝土中的WG利用率,支持可持续发展目标。通过使用471个废玻璃混凝土(WGC)实验样本的数据集,应用各种ML算法,包括梯度增强回归器(GBR)、随机森林(RF)、支持向量回归(SVR)、自适应增强(AdaBoost)、深度神经网络(DNN)和k-近邻(kNN),来预测包含抗压强度(CS)、碱-硅反应(ASR)和节省碳信用额度(SCC)的性能。基于GBR和SVR的模型预测CS、ASR和SCC的决定系数(R2)分别为0.95、0.97和0.99,具有较高的预测精度,CS、ASR和SCC的均方根误差(RMSE)分别为3.31 MPa、0.03%和0.11。SHapley加性解释(SHAP)分析用于解释模型结果,确保提议的ML模型的透明度和可解释性。结果表明,与平均粒径(MSWG)相比,水泥浆掺入量对这些性能的影响更为显著。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An explainable machine learning system for efficient use of waste glasses in durable concrete to maximise carbon credits towards net zero emissions.

Recycling waste glass (WG) can be time-consuming, costly, and impractical. However, its incorporation into concrete significantly reduces environmental impact and carbon emissions. This paper introduces machine learning (ML) to civil engineering to optimise WG utilisation in concrete, supporting sustainability objectives. By employing a dataset of 471 experimental samples of waste glass concrete (WGC), various ML algorithms are applied, including Gradient Boosting Regressor (GBR), Random Forest (RF), Support Vector Regression (SVR), Adaptive Boosting (AdaBoost), Deep Neural Network (DNN), and k-Nearest Neighbours (kNN), to predict properties containing compressive strength (CS), alkali-silica reaction (ASR), and saved carbon credits (SCC). The proposed models achieve outstanding prediction performance with Coefficient of determination (R2) values of 0.95 for CS, 0.97 for ASR, and 0.99 for SCC using GBR and SVR, demonstrating high prediction accuracy with Root mean square error (RMSE) values of 3.31 MPa for CS, 0.03 % for ASR, and 0.11 for SCC. The SHapley Additive exPlanations (SHAP) analysis is utilised to interpret the model results, ensuring transparency and interpretability of the proposed ML models. The results reveal that the incorporation level of WG is a more significant influencing factor for these properties than the mean size of WG (MSWG).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Waste management
Waste management 环境科学-工程:环境
CiteScore
15.60
自引率
6.20%
发文量
492
审稿时长
39 days
期刊介绍: Waste Management is devoted to the presentation and discussion of information on solid wastes,it covers the entire lifecycle of solid. wastes. Scope: Addresses solid wastes in both industrialized and economically developing countries Covers various types of solid wastes, including: Municipal (e.g., residential, institutional, commercial, light industrial) Agricultural Special (e.g., C and D, healthcare, household hazardous wastes, sewage sludge)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信