{"title":"超声波检测复合材料中的褶皱与渐进相移迁移。","authors":"Haiyan Zhang, Jinfeng Si, Hui Zhang, Heming Wei, Yiting Chen, Wenfa Zhu, Kailiang Xu, Qi Zhu","doi":"10.1016/j.ultras.2024.107557","DOIUrl":null,"url":null,"abstract":"<p><p>Fiber reinforced polymer composites (FRPs) are essential for various industrial fields, but wrinkles inside will greatly reduce their mechanical properties. Full-matrix capture (FMC) is a popular data structure for ultrasonic phased array imaging in composites. However, such structure may lead to data redundancy and noise interference. In this paper, a gradual phase shift migration (GPSM) is proposed to characterize wrinkles accurately. The gradual matrix is formed from the expansion along principal diagonal of FMC data with equal transmitter-receiver spacing. The dilemma between lateral resolution and sidelobe interference intensity is resolved to obtain the best imaging resolution by selecting an appropriate data structure. Moreover, to address the inconsistency of ultrasound velocities at different propagation directions caused by anisotropy of composites, the angle-dependant velocity is corrected by backwall reflection method (BRM). Based on gradual matrix data, the velocity-corrected phase shift factor is applied in the GPSM algorithm to obtain the wavefield at different depths through a layer-by-layer wavefield extrapolation. The experimental results indicate that four wrinkles can be detected in thick hybrid carbon-glass FRPs based on GPSM, with angle detection errors less than 6%. Furthermore, the GPSM method combining partial diagonal data takes only 0.5 s, achieving 60% improvement in computational efficiency compared to that with all gradual matrix data. The proposed method can be applied for high-resolution imaging of various multilayered medium in real-time.</p>","PeriodicalId":23522,"journal":{"name":"Ultrasonics","volume":"148 ","pages":"107557"},"PeriodicalIF":3.8000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrasonic detection of wrinkles in composites with gradual phase shift migration.\",\"authors\":\"Haiyan Zhang, Jinfeng Si, Hui Zhang, Heming Wei, Yiting Chen, Wenfa Zhu, Kailiang Xu, Qi Zhu\",\"doi\":\"10.1016/j.ultras.2024.107557\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fiber reinforced polymer composites (FRPs) are essential for various industrial fields, but wrinkles inside will greatly reduce their mechanical properties. Full-matrix capture (FMC) is a popular data structure for ultrasonic phased array imaging in composites. However, such structure may lead to data redundancy and noise interference. In this paper, a gradual phase shift migration (GPSM) is proposed to characterize wrinkles accurately. The gradual matrix is formed from the expansion along principal diagonal of FMC data with equal transmitter-receiver spacing. The dilemma between lateral resolution and sidelobe interference intensity is resolved to obtain the best imaging resolution by selecting an appropriate data structure. Moreover, to address the inconsistency of ultrasound velocities at different propagation directions caused by anisotropy of composites, the angle-dependant velocity is corrected by backwall reflection method (BRM). Based on gradual matrix data, the velocity-corrected phase shift factor is applied in the GPSM algorithm to obtain the wavefield at different depths through a layer-by-layer wavefield extrapolation. The experimental results indicate that four wrinkles can be detected in thick hybrid carbon-glass FRPs based on GPSM, with angle detection errors less than 6%. Furthermore, the GPSM method combining partial diagonal data takes only 0.5 s, achieving 60% improvement in computational efficiency compared to that with all gradual matrix data. The proposed method can be applied for high-resolution imaging of various multilayered medium in real-time.</p>\",\"PeriodicalId\":23522,\"journal\":{\"name\":\"Ultrasonics\",\"volume\":\"148 \",\"pages\":\"107557\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ultrasonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ultras.2024.107557\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1016/j.ultras.2024.107557","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
Ultrasonic detection of wrinkles in composites with gradual phase shift migration.
Fiber reinforced polymer composites (FRPs) are essential for various industrial fields, but wrinkles inside will greatly reduce their mechanical properties. Full-matrix capture (FMC) is a popular data structure for ultrasonic phased array imaging in composites. However, such structure may lead to data redundancy and noise interference. In this paper, a gradual phase shift migration (GPSM) is proposed to characterize wrinkles accurately. The gradual matrix is formed from the expansion along principal diagonal of FMC data with equal transmitter-receiver spacing. The dilemma between lateral resolution and sidelobe interference intensity is resolved to obtain the best imaging resolution by selecting an appropriate data structure. Moreover, to address the inconsistency of ultrasound velocities at different propagation directions caused by anisotropy of composites, the angle-dependant velocity is corrected by backwall reflection method (BRM). Based on gradual matrix data, the velocity-corrected phase shift factor is applied in the GPSM algorithm to obtain the wavefield at different depths through a layer-by-layer wavefield extrapolation. The experimental results indicate that four wrinkles can be detected in thick hybrid carbon-glass FRPs based on GPSM, with angle detection errors less than 6%. Furthermore, the GPSM method combining partial diagonal data takes only 0.5 s, achieving 60% improvement in computational efficiency compared to that with all gradual matrix data. The proposed method can be applied for high-resolution imaging of various multilayered medium in real-time.
期刊介绍:
Ultrasonics is the only internationally established journal which covers the entire field of ultrasound research and technology and all its many applications. Ultrasonics contains a variety of sections to keep readers fully informed and up-to-date on the whole spectrum of research and development throughout the world. Ultrasonics publishes papers of exceptional quality and of relevance to both academia and industry. Manuscripts in which ultrasonics is a central issue and not simply an incidental tool or minor issue, are welcomed.
As well as top quality original research papers and review articles by world renowned experts, Ultrasonics also regularly features short communications, a calendar of forthcoming events and special issues dedicated to topical subjects.