地衣芽孢杆菌DW2的代谢工程研究。

IF 4 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Xujie Li, Aoying Dong, Junru Yang, Jiang Zhu, Yangyang Zhan, Xin Ma, Dongbo Cai, Shouwen Chen
{"title":"地衣芽孢杆菌DW2的代谢工程研究。","authors":"Xujie Li, Aoying Dong, Junru Yang, Jiang Zhu, Yangyang Zhan, Xin Ma, Dongbo Cai, Shouwen Chen","doi":"10.1007/s11274-024-04238-x","DOIUrl":null,"url":null,"abstract":"<p><p>Ectoine is a high-value protective agent with extensive applications in the fields of fine chemicals and biopharmaceuticals, and it is naturally synthesized by Halomonas in extreme environment, however, the current production level cannot meet the growing market demand. In this study, we aimed to develop an efficient and environmentally friendly ectoine production process using Bacillus licheniformis as the host organism. Through introducing ectoine synthetase gene cluster ectABC from Halomonas elongate, as well as optimizing ectABC<sup>Hs</sup> expression by promoter and 5'-UTR optimization, ectoine titer was increased to 0.55 g/L. Furthermore, subsequent introduction of exogenous phosphoenolpyruvate carboxylase PPC<sup>EC</sup> and down-regulated expression of phosphoenolpyruvate carboxykinase PCK optimized the carbon flux through C4 anaplerotic pathway, and further benefited ectoine synthesis. Furthermore, the carbon flux towards aspartic acid accumulation was increased through optimization of glyoxylate and TCA cycles, accompanied with introducing lysC<sup>T311ICg</sup> and asd<sup>Cg</sup>, and blocking by-products pathways, ectoine titer produced by B. licheniformis ECT12 was 2.00 g/L. Moreover, NADPH supply was enhanced by overexpression of exogenous NADH kinase Pos5<sup>Sc</sup>, and ectoine transportation was improved by introducing compatible solute transporter ProP from Escherichia coli, and the resulting B. licheniformis ECT14 was able to produce 2.60 g/L ectoine. Last but not the least, the ectoine yield of 3.29 g/L was attained in a 5-L fermenter. Taken together, this study not only established B. licheniformis as a framework for sustainable production of ectoine, but also paved the way for achieving the industrial production of ectoine and aspartic acid derivatives in the future.</p>","PeriodicalId":23703,"journal":{"name":"World journal of microbiology & biotechnology","volume":"41 1","pages":"23"},"PeriodicalIF":4.0000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metabolic engineering of Bacillus licheniformis DW2 for ectoine production.\",\"authors\":\"Xujie Li, Aoying Dong, Junru Yang, Jiang Zhu, Yangyang Zhan, Xin Ma, Dongbo Cai, Shouwen Chen\",\"doi\":\"10.1007/s11274-024-04238-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ectoine is a high-value protective agent with extensive applications in the fields of fine chemicals and biopharmaceuticals, and it is naturally synthesized by Halomonas in extreme environment, however, the current production level cannot meet the growing market demand. In this study, we aimed to develop an efficient and environmentally friendly ectoine production process using Bacillus licheniformis as the host organism. Through introducing ectoine synthetase gene cluster ectABC from Halomonas elongate, as well as optimizing ectABC<sup>Hs</sup> expression by promoter and 5'-UTR optimization, ectoine titer was increased to 0.55 g/L. Furthermore, subsequent introduction of exogenous phosphoenolpyruvate carboxylase PPC<sup>EC</sup> and down-regulated expression of phosphoenolpyruvate carboxykinase PCK optimized the carbon flux through C4 anaplerotic pathway, and further benefited ectoine synthesis. Furthermore, the carbon flux towards aspartic acid accumulation was increased through optimization of glyoxylate and TCA cycles, accompanied with introducing lysC<sup>T311ICg</sup> and asd<sup>Cg</sup>, and blocking by-products pathways, ectoine titer produced by B. licheniformis ECT12 was 2.00 g/L. Moreover, NADPH supply was enhanced by overexpression of exogenous NADH kinase Pos5<sup>Sc</sup>, and ectoine transportation was improved by introducing compatible solute transporter ProP from Escherichia coli, and the resulting B. licheniformis ECT14 was able to produce 2.60 g/L ectoine. Last but not the least, the ectoine yield of 3.29 g/L was attained in a 5-L fermenter. Taken together, this study not only established B. licheniformis as a framework for sustainable production of ectoine, but also paved the way for achieving the industrial production of ectoine and aspartic acid derivatives in the future.</p>\",\"PeriodicalId\":23703,\"journal\":{\"name\":\"World journal of microbiology & biotechnology\",\"volume\":\"41 1\",\"pages\":\"23\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World journal of microbiology & biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11274-024-04238-x\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World journal of microbiology & biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11274-024-04238-x","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

依托碱是一种高价值的保护剂,在精细化工和生物制药领域有着广泛的应用,它是由盐单胞菌在极端环境下自然合成的,但目前的生产水平无法满足日益增长的市场需求。在本研究中,我们旨在开发一种高效、环保的以地衣芽孢杆菌为宿主生物的异托因生产工艺。通过从Halomonas elongate中引入外排素合成酶基因簇ectABC,并通过启动子和5'-UTR优化优化ectABCHs的表达,将外排素滴度提高到0.55 g/L。此外,随后引入外源磷酸烯醇丙酮酸羧化酶PPCEC,下调磷酸烯醇丙酮酸羧化酶PCK的表达,优化了C4复变途径的碳通量,进一步有利于外托因的合成。此外,通过优化glyoxylate和TCA循环,同时引入lysCT311ICg和asdCg,阻断副产物途径,使B. licheniformis ECT12产生的天冬氨酸滴度为2.00 g/L,增加了天冬氨酸积累的碳通量。此外,过量表达外源性NADH激酶Pos5Sc可增强NADPH的供应,引入大肠杆菌相容的溶质转运体ProP可改善肠外酯的转运,得到的B. licheniformis ECT14能产生2.60 g/L的肠外酯。最后,在5-L的发酵罐中获得了3.29 g/L的外托氨酸产量。综上所述,本研究不仅建立了地衣芽孢杆菌作为可持续生产外托氨酸的框架,而且为未来实现外托氨酸和天冬氨酸衍生物的工业化生产铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Metabolic engineering of Bacillus licheniformis DW2 for ectoine production.

Ectoine is a high-value protective agent with extensive applications in the fields of fine chemicals and biopharmaceuticals, and it is naturally synthesized by Halomonas in extreme environment, however, the current production level cannot meet the growing market demand. In this study, we aimed to develop an efficient and environmentally friendly ectoine production process using Bacillus licheniformis as the host organism. Through introducing ectoine synthetase gene cluster ectABC from Halomonas elongate, as well as optimizing ectABCHs expression by promoter and 5'-UTR optimization, ectoine titer was increased to 0.55 g/L. Furthermore, subsequent introduction of exogenous phosphoenolpyruvate carboxylase PPCEC and down-regulated expression of phosphoenolpyruvate carboxykinase PCK optimized the carbon flux through C4 anaplerotic pathway, and further benefited ectoine synthesis. Furthermore, the carbon flux towards aspartic acid accumulation was increased through optimization of glyoxylate and TCA cycles, accompanied with introducing lysCT311ICg and asdCg, and blocking by-products pathways, ectoine titer produced by B. licheniformis ECT12 was 2.00 g/L. Moreover, NADPH supply was enhanced by overexpression of exogenous NADH kinase Pos5Sc, and ectoine transportation was improved by introducing compatible solute transporter ProP from Escherichia coli, and the resulting B. licheniformis ECT14 was able to produce 2.60 g/L ectoine. Last but not the least, the ectoine yield of 3.29 g/L was attained in a 5-L fermenter. Taken together, this study not only established B. licheniformis as a framework for sustainable production of ectoine, but also paved the way for achieving the industrial production of ectoine and aspartic acid derivatives in the future.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
World journal of microbiology & biotechnology
World journal of microbiology & biotechnology 工程技术-生物工程与应用微生物
CiteScore
6.30
自引率
2.40%
发文量
257
审稿时长
2.5 months
期刊介绍: World Journal of Microbiology and Biotechnology publishes research papers and review articles on all aspects of Microbiology and Microbial Biotechnology. Since its foundation, the Journal has provided a forum for research work directed toward finding microbiological and biotechnological solutions to global problems. As many of these problems, including crop productivity, public health and waste management, have major impacts in the developing world, the Journal especially reports on advances for and from developing regions. Some topics are not within the scope of the Journal. Please do not submit your manuscript if it falls into one of the following categories: · Virology · Simple isolation of microbes from local sources · Simple descriptions of an environment or reports on a procedure · Veterinary, agricultural and clinical topics in which the main focus is not on a microorganism · Data reporting on host response to microbes · Optimization of a procedure · Description of the biological effects of not fully identified compounds or undefined extracts of natural origin · Data on not fully purified enzymes or procedures in which they are applied All articles published in the Journal are independently refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信