Eloi Sinard, Laurent Gajny, Muriel de La Dure-Molla, Rufino Felizardo, Gauthier Dot
{"title":"自动锥形束计算机断层扫描(Cone Beam Computed Tomography)分割与罕见病相关或不相关的多颗受撞击牙齿:评估四种基于深度学习的方法。","authors":"Eloi Sinard, Laurent Gajny, Muriel de La Dure-Molla, Rufino Felizardo, Gauthier Dot","doi":"10.1111/ocr.12890","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To assess the accuracy of three commercially available and one open-source deep learning (DL) solutions for automatic tooth segmentation in cone beam computed tomography (CBCT) images of patients with multiple dental impactions.</p><p><strong>Materials and methods: </strong>Twenty patients (20 CBCT scans) were selected from a retrospective cohort of individuals with multiple dental impactions. For each CBCT scan, one reference segmentation and four DL segmentations of the maxillary and mandibular teeth were obtained. Reference segmentations were generated by experts using a semi-automatic process. DL segmentations were automatically generated according to the manufacturer's instructions. Quantitative and qualitative evaluations of each DL segmentation were performed by comparing it with expert-generated segmentation. The quantitative metrics used were Dice similarity coefficient (DSC) and the normalized surface distance (NSD).</p><p><strong>Results: </strong>The patients had an average of 12 retained teeth, with 12 of them diagnosed with a rare disease. DSC values ranged from 88.5% ± 3.2% to 95.6% ± 1.2%, and NSD values ranged from 95.3% ± 2.7% to 97.4% ± 6.5%. The number of completely unsegmented teeth ranged from 1 (0.1%) to 41 (6.0%). Two solutions (Diagnocat and DentalSegmentator) outperformed the others across all tested parameters.</p><p><strong>Conclusion: </strong>All the tested methods showed a mean NSD of approximately 95%, proving their overall efficiency for tooth segmentation. The accuracy of the methods varied among the four tested solutions owing to the presence of impacted teeth in our CBCT scans. DL solutions are evolving rapidly, and their future performance cannot be predicted based on our results.</p>","PeriodicalId":19652,"journal":{"name":"Orthodontics & Craniofacial Research","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automated Cone Beam Computed Tomography Segmentation of Multiple Impacted Teeth With or Without Association to Rare Diseases: Evaluation of Four Deep Learning-Based Methods.\",\"authors\":\"Eloi Sinard, Laurent Gajny, Muriel de La Dure-Molla, Rufino Felizardo, Gauthier Dot\",\"doi\":\"10.1111/ocr.12890\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>To assess the accuracy of three commercially available and one open-source deep learning (DL) solutions for automatic tooth segmentation in cone beam computed tomography (CBCT) images of patients with multiple dental impactions.</p><p><strong>Materials and methods: </strong>Twenty patients (20 CBCT scans) were selected from a retrospective cohort of individuals with multiple dental impactions. For each CBCT scan, one reference segmentation and four DL segmentations of the maxillary and mandibular teeth were obtained. Reference segmentations were generated by experts using a semi-automatic process. DL segmentations were automatically generated according to the manufacturer's instructions. Quantitative and qualitative evaluations of each DL segmentation were performed by comparing it with expert-generated segmentation. The quantitative metrics used were Dice similarity coefficient (DSC) and the normalized surface distance (NSD).</p><p><strong>Results: </strong>The patients had an average of 12 retained teeth, with 12 of them diagnosed with a rare disease. DSC values ranged from 88.5% ± 3.2% to 95.6% ± 1.2%, and NSD values ranged from 95.3% ± 2.7% to 97.4% ± 6.5%. The number of completely unsegmented teeth ranged from 1 (0.1%) to 41 (6.0%). Two solutions (Diagnocat and DentalSegmentator) outperformed the others across all tested parameters.</p><p><strong>Conclusion: </strong>All the tested methods showed a mean NSD of approximately 95%, proving their overall efficiency for tooth segmentation. The accuracy of the methods varied among the four tested solutions owing to the presence of impacted teeth in our CBCT scans. DL solutions are evolving rapidly, and their future performance cannot be predicted based on our results.</p>\",\"PeriodicalId\":19652,\"journal\":{\"name\":\"Orthodontics & Craniofacial Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Orthodontics & Craniofacial Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/ocr.12890\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Orthodontics & Craniofacial Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/ocr.12890","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
Automated Cone Beam Computed Tomography Segmentation of Multiple Impacted Teeth With or Without Association to Rare Diseases: Evaluation of Four Deep Learning-Based Methods.
Objective: To assess the accuracy of three commercially available and one open-source deep learning (DL) solutions for automatic tooth segmentation in cone beam computed tomography (CBCT) images of patients with multiple dental impactions.
Materials and methods: Twenty patients (20 CBCT scans) were selected from a retrospective cohort of individuals with multiple dental impactions. For each CBCT scan, one reference segmentation and four DL segmentations of the maxillary and mandibular teeth were obtained. Reference segmentations were generated by experts using a semi-automatic process. DL segmentations were automatically generated according to the manufacturer's instructions. Quantitative and qualitative evaluations of each DL segmentation were performed by comparing it with expert-generated segmentation. The quantitative metrics used were Dice similarity coefficient (DSC) and the normalized surface distance (NSD).
Results: The patients had an average of 12 retained teeth, with 12 of them diagnosed with a rare disease. DSC values ranged from 88.5% ± 3.2% to 95.6% ± 1.2%, and NSD values ranged from 95.3% ± 2.7% to 97.4% ± 6.5%. The number of completely unsegmented teeth ranged from 1 (0.1%) to 41 (6.0%). Two solutions (Diagnocat and DentalSegmentator) outperformed the others across all tested parameters.
Conclusion: All the tested methods showed a mean NSD of approximately 95%, proving their overall efficiency for tooth segmentation. The accuracy of the methods varied among the four tested solutions owing to the presence of impacted teeth in our CBCT scans. DL solutions are evolving rapidly, and their future performance cannot be predicted based on our results.
期刊介绍:
Orthodontics & Craniofacial Research - Genes, Growth and Development is published to serve its readers as an international forum for the presentation and critical discussion of issues pertinent to the advancement of the specialty of orthodontics and the evidence-based knowledge of craniofacial growth and development. This forum is based on scientifically supported information, but also includes minority and conflicting opinions.
The objective of the journal is to facilitate effective communication between the research community and practicing clinicians. Original papers of high scientific quality that report the findings of clinical trials, clinical epidemiology, and novel therapeutic or diagnostic approaches are appropriate submissions. Similarly, we welcome papers in genetics, developmental biology, syndromology, surgery, speech and hearing, and other biomedical disciplines related to clinical orthodontics and normal and abnormal craniofacial growth and development. In addition to original and basic research, the journal publishes concise reviews, case reports of substantial value, invited essays, letters, and announcements.
The journal is published quarterly. The review of submitted papers will be coordinated by the editor and members of the editorial board. It is policy to review manuscripts within 3 to 4 weeks of receipt and to publish within 3 to 6 months of acceptance.