多发性硬化症患者肠道菌群与重金属的相互作用。

IF 3.3 3区 医学 Q3 IMMUNOLOGY
Hawraa Raqee Hashim Jumaylawee , Majid Komijani , Shahnaz Shahrjerdi , Javad Sargolzaei
{"title":"多发性硬化症患者肠道菌群与重金属的相互作用。","authors":"Hawraa Raqee Hashim Jumaylawee ,&nbsp;Majid Komijani ,&nbsp;Shahnaz Shahrjerdi ,&nbsp;Javad Sargolzaei","doi":"10.1016/j.micpath.2024.107269","DOIUrl":null,"url":null,"abstract":"<div><div>Multiple Sclerosis (MS) is a chronic inflammatory disease characterized by central nervous system (CNS). In this study, the concentration of heavy metals was measured in stool samples of MS patients by Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS) method and compared with healthy people. Also, another goal of this study is to investigate the alteration of the gut microbiome of MS patients by metagenomics technique based on the 16S rRNA gene sequencing. The IL-10 ELISA assay showed no significant differences between the serum level of the IL-10 in the patients and the control group (p = 0.510). Heavy metal measurement by ICP-MS showed significantly higher levels of arsenic (As, Mean = 32.77 μg/kg), nickel (Ni, Mean = 7.154 μg/kg), manganese (Mn, Mean = 3723 μg/kg), and zinc (Zn, Mean = 5508 μg/kg) in the stool samples of the MS group compared to the control group, while concentrations of iron (Fe, Mean = 9585 μg/kg), lead (Pb, Mean = 18.54 μg/kg), titanium (Ti, Mean = 69.69 μg/kg), and tin (Sn, Mean = 13.92 μg/kg) were significantly lower. The result of gut microbiome analysis showed an increase in the abundance of the <em>Verrumicrobiaceae</em>, <em>Lachnospiraceae</em> and <em>Ruminococcaceae</em> families was considerably increased in MS patients compared to the control group (p &lt; 0.05). This study reports that high levels of heavy metals such as Ars, Ni, Mn, and Zn, deficiency of Fe, Pb, Ti, and Sn, and alteration of the gut microbiome are involved in the pathogenesis of MS. The novelty of this study lies in its multi-faceted approach to understanding MS by integrating the measurement of heavy metals in stool samples with the analysis of gut microbiome alterations, thereby providing comprehensive insights into heavy metals, the gut microbiome, and potential therapeutic avenues. This study suggests several potential applications and practical implications based on its findings regarding heavy metals, gut microbiome alterations, and IL-10 levels in MS. First, the identification of elevated levels of specific heavy metals and deficiencies in others may lead to targeted screening and monitoring, informing preventive strategies for MS patients. Additionally, the observed gut microbiome changes could facilitate the development of microbiome-based therapies, such as probiotics or dietary interventions, aimed at restoring microbial balance. Finally, exploring the interplay between heavy metals, gut microbiome, and immune response may guide the creation of novel therapeutic interventions, ultimately enhancing treatment efficacy and providing new avenues for managing MS, thereby alleviating the burden of this chronic condition.</div></div>","PeriodicalId":18599,"journal":{"name":"Microbial pathogenesis","volume":"199 ","pages":"Article 107269"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The interplay of gut microbiota and heavy metals in multiple sclerosis patients\",\"authors\":\"Hawraa Raqee Hashim Jumaylawee ,&nbsp;Majid Komijani ,&nbsp;Shahnaz Shahrjerdi ,&nbsp;Javad Sargolzaei\",\"doi\":\"10.1016/j.micpath.2024.107269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Multiple Sclerosis (MS) is a chronic inflammatory disease characterized by central nervous system (CNS). In this study, the concentration of heavy metals was measured in stool samples of MS patients by Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS) method and compared with healthy people. Also, another goal of this study is to investigate the alteration of the gut microbiome of MS patients by metagenomics technique based on the 16S rRNA gene sequencing. The IL-10 ELISA assay showed no significant differences between the serum level of the IL-10 in the patients and the control group (p = 0.510). Heavy metal measurement by ICP-MS showed significantly higher levels of arsenic (As, Mean = 32.77 μg/kg), nickel (Ni, Mean = 7.154 μg/kg), manganese (Mn, Mean = 3723 μg/kg), and zinc (Zn, Mean = 5508 μg/kg) in the stool samples of the MS group compared to the control group, while concentrations of iron (Fe, Mean = 9585 μg/kg), lead (Pb, Mean = 18.54 μg/kg), titanium (Ti, Mean = 69.69 μg/kg), and tin (Sn, Mean = 13.92 μg/kg) were significantly lower. The result of gut microbiome analysis showed an increase in the abundance of the <em>Verrumicrobiaceae</em>, <em>Lachnospiraceae</em> and <em>Ruminococcaceae</em> families was considerably increased in MS patients compared to the control group (p &lt; 0.05). This study reports that high levels of heavy metals such as Ars, Ni, Mn, and Zn, deficiency of Fe, Pb, Ti, and Sn, and alteration of the gut microbiome are involved in the pathogenesis of MS. The novelty of this study lies in its multi-faceted approach to understanding MS by integrating the measurement of heavy metals in stool samples with the analysis of gut microbiome alterations, thereby providing comprehensive insights into heavy metals, the gut microbiome, and potential therapeutic avenues. This study suggests several potential applications and practical implications based on its findings regarding heavy metals, gut microbiome alterations, and IL-10 levels in MS. First, the identification of elevated levels of specific heavy metals and deficiencies in others may lead to targeted screening and monitoring, informing preventive strategies for MS patients. Additionally, the observed gut microbiome changes could facilitate the development of microbiome-based therapies, such as probiotics or dietary interventions, aimed at restoring microbial balance. Finally, exploring the interplay between heavy metals, gut microbiome, and immune response may guide the creation of novel therapeutic interventions, ultimately enhancing treatment efficacy and providing new avenues for managing MS, thereby alleviating the burden of this chronic condition.</div></div>\",\"PeriodicalId\":18599,\"journal\":{\"name\":\"Microbial pathogenesis\",\"volume\":\"199 \",\"pages\":\"Article 107269\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbial pathogenesis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0882401024007368\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial pathogenesis","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0882401024007368","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

多发性硬化(MS)是一种以中枢神经系统(CNS)为特征的慢性炎症性疾病。本研究采用电感耦合等离子体质谱(ICP-Mass)法测定多发性硬化症患者粪便样品中的重金属浓度,并与健康人进行比较。此外,本研究的另一个目标是通过基于16S rRNA基因测序的宏基因组学技术来研究MS患者肠道微生物组的改变。白细胞介素-10酶联免疫吸附试验显示,患者血清白细胞介素-10水平与对照组无显著差异(p=0.510)。ICP-Mass测定结果显示,MS组粪便中砷(As, Mean=32.77 μg/kg)、镍(Ni, Mean=7.154 μg/kg)、锰(Mn, Mean=3723 μg/kg)、锌(Zn, Mean=5508 μg/kg)含量显著高于对照组,铁(Fe, Mean=9585 μg/kg)、铅(Pb, Mean=18.54 μg/kg)、钛(Ti, Mean=69.69 μg/kg)、锡(Sn, Mean=13.92 μ kg)含量显著低于对照组。肠道微生物组分析的结果显示,与对照组相比,MS患者的Verrumicrobiaceae, Lachnospiraceae和Ruminococcaceae家族的丰度显著增加(p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The interplay of gut microbiota and heavy metals in multiple sclerosis patients
Multiple Sclerosis (MS) is a chronic inflammatory disease characterized by central nervous system (CNS). In this study, the concentration of heavy metals was measured in stool samples of MS patients by Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS) method and compared with healthy people. Also, another goal of this study is to investigate the alteration of the gut microbiome of MS patients by metagenomics technique based on the 16S rRNA gene sequencing. The IL-10 ELISA assay showed no significant differences between the serum level of the IL-10 in the patients and the control group (p = 0.510). Heavy metal measurement by ICP-MS showed significantly higher levels of arsenic (As, Mean = 32.77 μg/kg), nickel (Ni, Mean = 7.154 μg/kg), manganese (Mn, Mean = 3723 μg/kg), and zinc (Zn, Mean = 5508 μg/kg) in the stool samples of the MS group compared to the control group, while concentrations of iron (Fe, Mean = 9585 μg/kg), lead (Pb, Mean = 18.54 μg/kg), titanium (Ti, Mean = 69.69 μg/kg), and tin (Sn, Mean = 13.92 μg/kg) were significantly lower. The result of gut microbiome analysis showed an increase in the abundance of the Verrumicrobiaceae, Lachnospiraceae and Ruminococcaceae families was considerably increased in MS patients compared to the control group (p < 0.05). This study reports that high levels of heavy metals such as Ars, Ni, Mn, and Zn, deficiency of Fe, Pb, Ti, and Sn, and alteration of the gut microbiome are involved in the pathogenesis of MS. The novelty of this study lies in its multi-faceted approach to understanding MS by integrating the measurement of heavy metals in stool samples with the analysis of gut microbiome alterations, thereby providing comprehensive insights into heavy metals, the gut microbiome, and potential therapeutic avenues. This study suggests several potential applications and practical implications based on its findings regarding heavy metals, gut microbiome alterations, and IL-10 levels in MS. First, the identification of elevated levels of specific heavy metals and deficiencies in others may lead to targeted screening and monitoring, informing preventive strategies for MS patients. Additionally, the observed gut microbiome changes could facilitate the development of microbiome-based therapies, such as probiotics or dietary interventions, aimed at restoring microbial balance. Finally, exploring the interplay between heavy metals, gut microbiome, and immune response may guide the creation of novel therapeutic interventions, ultimately enhancing treatment efficacy and providing new avenues for managing MS, thereby alleviating the burden of this chronic condition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microbial pathogenesis
Microbial pathogenesis 医学-免疫学
CiteScore
7.40
自引率
2.60%
发文量
472
审稿时长
56 days
期刊介绍: Microbial Pathogenesis publishes original contributions and reviews about the molecular and cellular mechanisms of infectious diseases. It covers microbiology, host-pathogen interaction and immunology related to infectious agents, including bacteria, fungi, viruses and protozoa. It also accepts papers in the field of clinical microbiology, with the exception of case reports. Research Areas Include: -Pathogenesis -Virulence factors -Host susceptibility or resistance -Immune mechanisms -Identification, cloning and sequencing of relevant genes -Genetic studies -Viruses, prokaryotic organisms and protozoa -Microbiota -Systems biology related to infectious diseases -Targets for vaccine design (pre-clinical studies)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信