{"title":"转录组学和代谢组学分析揭示了丛枝菌根真菌对葡萄硒吸收的促进作用。","authors":"Jin Wang, Yong Pi, Yuxin Li, Hao Wang, Kewen Huang, Xun Wang, Hui Xia, Xiaoli Zhang, Dong Liang, Xiulan Lv, Lijin Lin","doi":"10.1016/j.plaphy.2024.109456","DOIUrl":null,"url":null,"abstract":"<p><p>To improve the selenium (Se) uptake in grapes, the effects of arbuscular mycorrhizal fungi (AMF) on the Se accumulation in grapevines were studied under a soil Se concentration of 5 mg/kg, and the transcriptome and metabolome sequencing were used to elucidate the regulatory mechanism of AMF on Se accumulation. AMF initially decreased the biomass of grapevines, but later increased the biomass. Moreover, AMF enhanced the activities of Se metabolism enzymes (adenosine triphosphate sulfurylase, adenosine 5'-phosphosulfate reductase, serine acetyltransferase, and cysteine methyltransferase) and the Se concentration in grapevines. Compared to Se treatment alone, AMF resulted in a 20% increase in root Se concentration and a 21% increase in shoot Se concentration 60 days after treatment. Transcriptome and metabolome analyses revealed that AMF up-regulated the expression levels of inorganic phosphate transporter proteins 1-11 and down-regulated the expression levels of ABC transporter family members, water channel proteins, and sulfur transporter proteins in grapevines. In addition, AMF elevated the levels of hesperidin, naringenin, apigenin, neohesperidin, pine sapogenin, and rutin in grapevines. Therefore, AMF can enhance Se accumulation in grapes by modulating the phosphate transport pathway and the biosynthesis of secondary metabolites involved in the phenylpropane biosynthesis pathway, flavonoid biosynthesis pathway, and flavonoid and flavonol biosynthesis pathway.</p>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"219 ","pages":"109456"},"PeriodicalIF":6.1000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transcriptome and metabolome analyses reveal the promoting effects of arbuscular mycorrhizal fungi on selenium uptake in grapevines.\",\"authors\":\"Jin Wang, Yong Pi, Yuxin Li, Hao Wang, Kewen Huang, Xun Wang, Hui Xia, Xiaoli Zhang, Dong Liang, Xiulan Lv, Lijin Lin\",\"doi\":\"10.1016/j.plaphy.2024.109456\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To improve the selenium (Se) uptake in grapes, the effects of arbuscular mycorrhizal fungi (AMF) on the Se accumulation in grapevines were studied under a soil Se concentration of 5 mg/kg, and the transcriptome and metabolome sequencing were used to elucidate the regulatory mechanism of AMF on Se accumulation. AMF initially decreased the biomass of grapevines, but later increased the biomass. Moreover, AMF enhanced the activities of Se metabolism enzymes (adenosine triphosphate sulfurylase, adenosine 5'-phosphosulfate reductase, serine acetyltransferase, and cysteine methyltransferase) and the Se concentration in grapevines. Compared to Se treatment alone, AMF resulted in a 20% increase in root Se concentration and a 21% increase in shoot Se concentration 60 days after treatment. Transcriptome and metabolome analyses revealed that AMF up-regulated the expression levels of inorganic phosphate transporter proteins 1-11 and down-regulated the expression levels of ABC transporter family members, water channel proteins, and sulfur transporter proteins in grapevines. In addition, AMF elevated the levels of hesperidin, naringenin, apigenin, neohesperidin, pine sapogenin, and rutin in grapevines. Therefore, AMF can enhance Se accumulation in grapes by modulating the phosphate transport pathway and the biosynthesis of secondary metabolites involved in the phenylpropane biosynthesis pathway, flavonoid biosynthesis pathway, and flavonoid and flavonol biosynthesis pathway.</p>\",\"PeriodicalId\":20234,\"journal\":{\"name\":\"Plant Physiology and Biochemistry\",\"volume\":\"219 \",\"pages\":\"109456\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Physiology and Biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.plaphy.2024.109456\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology and Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.plaphy.2024.109456","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Transcriptome and metabolome analyses reveal the promoting effects of arbuscular mycorrhizal fungi on selenium uptake in grapevines.
To improve the selenium (Se) uptake in grapes, the effects of arbuscular mycorrhizal fungi (AMF) on the Se accumulation in grapevines were studied under a soil Se concentration of 5 mg/kg, and the transcriptome and metabolome sequencing were used to elucidate the regulatory mechanism of AMF on Se accumulation. AMF initially decreased the biomass of grapevines, but later increased the biomass. Moreover, AMF enhanced the activities of Se metabolism enzymes (adenosine triphosphate sulfurylase, adenosine 5'-phosphosulfate reductase, serine acetyltransferase, and cysteine methyltransferase) and the Se concentration in grapevines. Compared to Se treatment alone, AMF resulted in a 20% increase in root Se concentration and a 21% increase in shoot Se concentration 60 days after treatment. Transcriptome and metabolome analyses revealed that AMF up-regulated the expression levels of inorganic phosphate transporter proteins 1-11 and down-regulated the expression levels of ABC transporter family members, water channel proteins, and sulfur transporter proteins in grapevines. In addition, AMF elevated the levels of hesperidin, naringenin, apigenin, neohesperidin, pine sapogenin, and rutin in grapevines. Therefore, AMF can enhance Se accumulation in grapes by modulating the phosphate transport pathway and the biosynthesis of secondary metabolites involved in the phenylpropane biosynthesis pathway, flavonoid biosynthesis pathway, and flavonoid and flavonol biosynthesis pathway.
期刊介绍:
Plant Physiology and Biochemistry publishes original theoretical, experimental and technical contributions in the various fields of plant physiology (biochemistry, physiology, structure, genetics, plant-microbe interactions, etc.) at diverse levels of integration (molecular, subcellular, cellular, organ, whole plant, environmental). Opinions expressed in the journal are the sole responsibility of the authors and publication does not imply the editors'' agreement.
Manuscripts describing molecular-genetic and/or gene expression data that are not integrated with biochemical analysis and/or actual measurements of plant physiological processes are not suitable for PPB. Also "Omics" studies (transcriptomics, proteomics, metabolomics, etc.) reporting descriptive analysis without an element of functional validation assays, will not be considered. Similarly, applied agronomic or phytochemical studies that generate no new, fundamental insights in plant physiological and/or biochemical processes are not suitable for publication in PPB.
Plant Physiology and Biochemistry publishes several types of articles: Reviews, Papers and Short Papers. Articles for Reviews are either invited by the editor or proposed by the authors for the editor''s prior agreement. Reviews should not exceed 40 typewritten pages and Short Papers no more than approximately 8 typewritten pages. The fundamental character of Plant Physiology and Biochemistry remains that of a journal for original results.