HongXin Cai, Min-Yong Lee, Kwang-Mahn Kim, Heng Bo Jiang, Jae-Sung Kwon
{"title":"材料挤压3D打印机或3D笔制备聚己内酯支架的力学和生物学性能评估:一种新的骨修复策略。","authors":"HongXin Cai, Min-Yong Lee, Kwang-Mahn Kim, Heng Bo Jiang, Jae-Sung Kwon","doi":"10.1002/jbm.b.35526","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Addressing the high cost and long cycle associated with the multistep digital restoration process involving 3D printing technology, we proposed the 3D pen as an innovative strategy for rapid bone repair. Capitalizing on the low melting point characteristic of polycaprolactone (PCL), we introduced, for the first time, the novel concept of directly constructing scaffolds at bone defect sites using 3D pens. In this in vitro study, we meticulously evaluated both the mechanical and biological properties of 3D pen-printed PCL scaffolds with six distinct textures: unidirectional (UNI) (0°, 45°, 90°), bidirectional (BID) (−45°/45°, 0°/90°), and concentric (CON). The bone repair scaffold creation process was simulated using a fused deposition modeling (FDM) 3D printer and a 3D pen by creating a cattle bone defect model to compare the achieved scaffold time efficiency and accuracy. Mechanical test results revealed that 3D pen-printed scaffolds with different textures exhibited varying results in four tests, except the shear bond test. Optimal scaffold strength was consistently achieved when printing parallel to the applied force. Regarding biological properties, these scaffolds exhibited consistent cell viability over time and showcased excellent cell attachment capabilities overall. Furthermore, cells grew regularly along the printed filaments, with additional living cells at high elevations observed. Additionally, the 3D pen method outperformed traditional digital technology with an FDM 3D printer concerning accuracy and speed. These findings underscored the tremendous potential of the 3D pen in the realm of medical science, specifically within the domain of bone tissue engineering, characterized by its low cost, high speed, and convenience.</p>\n </div>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":"113 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of the Mechanical and Biological Properties of Polycaprolactone Scaffolds Produced by a Material Extrusion 3D Printer or 3D Pen: A Novel Bone Repair Strategy\",\"authors\":\"HongXin Cai, Min-Yong Lee, Kwang-Mahn Kim, Heng Bo Jiang, Jae-Sung Kwon\",\"doi\":\"10.1002/jbm.b.35526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Addressing the high cost and long cycle associated with the multistep digital restoration process involving 3D printing technology, we proposed the 3D pen as an innovative strategy for rapid bone repair. Capitalizing on the low melting point characteristic of polycaprolactone (PCL), we introduced, for the first time, the novel concept of directly constructing scaffolds at bone defect sites using 3D pens. In this in vitro study, we meticulously evaluated both the mechanical and biological properties of 3D pen-printed PCL scaffolds with six distinct textures: unidirectional (UNI) (0°, 45°, 90°), bidirectional (BID) (−45°/45°, 0°/90°), and concentric (CON). The bone repair scaffold creation process was simulated using a fused deposition modeling (FDM) 3D printer and a 3D pen by creating a cattle bone defect model to compare the achieved scaffold time efficiency and accuracy. Mechanical test results revealed that 3D pen-printed scaffolds with different textures exhibited varying results in four tests, except the shear bond test. Optimal scaffold strength was consistently achieved when printing parallel to the applied force. Regarding biological properties, these scaffolds exhibited consistent cell viability over time and showcased excellent cell attachment capabilities overall. Furthermore, cells grew regularly along the printed filaments, with additional living cells at high elevations observed. Additionally, the 3D pen method outperformed traditional digital technology with an FDM 3D printer concerning accuracy and speed. These findings underscored the tremendous potential of the 3D pen in the realm of medical science, specifically within the domain of bone tissue engineering, characterized by its low cost, high speed, and convenience.</p>\\n </div>\",\"PeriodicalId\":15269,\"journal\":{\"name\":\"Journal of biomedical materials research. Part B, Applied biomaterials\",\"volume\":\"113 1\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biomedical materials research. Part B, Applied biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbm.b.35526\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part B, Applied biomaterials","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.b.35526","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Evaluation of the Mechanical and Biological Properties of Polycaprolactone Scaffolds Produced by a Material Extrusion 3D Printer or 3D Pen: A Novel Bone Repair Strategy
Addressing the high cost and long cycle associated with the multistep digital restoration process involving 3D printing technology, we proposed the 3D pen as an innovative strategy for rapid bone repair. Capitalizing on the low melting point characteristic of polycaprolactone (PCL), we introduced, for the first time, the novel concept of directly constructing scaffolds at bone defect sites using 3D pens. In this in vitro study, we meticulously evaluated both the mechanical and biological properties of 3D pen-printed PCL scaffolds with six distinct textures: unidirectional (UNI) (0°, 45°, 90°), bidirectional (BID) (−45°/45°, 0°/90°), and concentric (CON). The bone repair scaffold creation process was simulated using a fused deposition modeling (FDM) 3D printer and a 3D pen by creating a cattle bone defect model to compare the achieved scaffold time efficiency and accuracy. Mechanical test results revealed that 3D pen-printed scaffolds with different textures exhibited varying results in four tests, except the shear bond test. Optimal scaffold strength was consistently achieved when printing parallel to the applied force. Regarding biological properties, these scaffolds exhibited consistent cell viability over time and showcased excellent cell attachment capabilities overall. Furthermore, cells grew regularly along the printed filaments, with additional living cells at high elevations observed. Additionally, the 3D pen method outperformed traditional digital technology with an FDM 3D printer concerning accuracy and speed. These findings underscored the tremendous potential of the 3D pen in the realm of medical science, specifically within the domain of bone tissue engineering, characterized by its low cost, high speed, and convenience.
期刊介绍:
Journal of Biomedical Materials Research – Part B: Applied Biomaterials is a highly interdisciplinary peer-reviewed journal serving the needs of biomaterials professionals who design, develop, produce and apply biomaterials and medical devices. It has the common focus of biomaterials applied to the human body and covers all disciplines where medical devices are used. Papers are published on biomaterials related to medical device development and manufacture, degradation in the body, nano- and biomimetic- biomaterials interactions, mechanics of biomaterials, implant retrieval and analysis, tissue-biomaterial surface interactions, wound healing, infection, drug delivery, standards and regulation of devices, animal and pre-clinical studies of biomaterials and medical devices, and tissue-biopolymer-material combination products. Manuscripts are published in one of six formats:
• original research reports
• short research and development reports
• scientific reviews
• current concepts articles
• special reports
• editorials
Journal of Biomedical Materials Research – Part B: Applied Biomaterials is an official journal of the Society for Biomaterials, Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials. Manuscripts from all countries are invited but must be in English. Authors are not required to be members of the affiliated Societies, but members of these societies are encouraged to submit their work to the journal for consideration.