原代肝细胞非黏附单细胞培养技术的建议。

IF 2 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Cytotechnology Pub Date : 2025-02-01 Epub Date: 2024-12-30 DOI:10.1007/s10616-024-00696-1
Mario K Uehara, Ronald Bual, Muhammad Shafiq, Kozue Yoshida, Hiroyuki Ijima
{"title":"原代肝细胞非黏附单细胞培养技术的建议。","authors":"Mario K Uehara, Ronald Bual, Muhammad Shafiq, Kozue Yoshida, Hiroyuki Ijima","doi":"10.1007/s10616-024-00696-1","DOIUrl":null,"url":null,"abstract":"<p><p>Primary hepatocytes (PHs) are indispensable for studying liver function, drug screening, and regenerative medicine. However, freshly isolated PHs only survive for a few hours in non-adherent suspension culture. This study proposes treatment with PEG-GRGDS, a polymer-peptide conjugate comprising polyethylene glycol (PEG) and the pentapeptide sequence Gly-Arg-Gly-Asp-Ser (GRGDS), to sustain the viability of dispersed single PHs under non-adherent conditions. As a proof of concept, PHs treated with the PEG-GRGDS molecule were cultured in a microarray with single-cell-sized microwells. After 24 h of culture, enhanced cell survival was confirmed via esterase activity alongside activity for Cytochrome P450 1A1 (CYP1A1). Some liver-specific functionalities, including albumin secretion, were observed in the treated PHs. Additionally, it was observed that the length of the PEG-chain in the conjugates influenced the maintenance of single-cell dispersion and the levels of polymerized actin in the cells. These findings suggest that treatment with a polymer-peptide like PEG-GRGDS might provide a promising platform for the short-term culture of non-adherent single PHs.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s10616-024-00696-1.</p>","PeriodicalId":10890,"journal":{"name":"Cytotechnology","volume":"77 1","pages":"30"},"PeriodicalIF":2.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11685352/pdf/","citationCount":"0","resultStr":"{\"title\":\"Proposal for a non-adhesive single-cell culture technology for primary hepatocytes.\",\"authors\":\"Mario K Uehara, Ronald Bual, Muhammad Shafiq, Kozue Yoshida, Hiroyuki Ijima\",\"doi\":\"10.1007/s10616-024-00696-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Primary hepatocytes (PHs) are indispensable for studying liver function, drug screening, and regenerative medicine. However, freshly isolated PHs only survive for a few hours in non-adherent suspension culture. This study proposes treatment with PEG-GRGDS, a polymer-peptide conjugate comprising polyethylene glycol (PEG) and the pentapeptide sequence Gly-Arg-Gly-Asp-Ser (GRGDS), to sustain the viability of dispersed single PHs under non-adherent conditions. As a proof of concept, PHs treated with the PEG-GRGDS molecule were cultured in a microarray with single-cell-sized microwells. After 24 h of culture, enhanced cell survival was confirmed via esterase activity alongside activity for Cytochrome P450 1A1 (CYP1A1). Some liver-specific functionalities, including albumin secretion, were observed in the treated PHs. Additionally, it was observed that the length of the PEG-chain in the conjugates influenced the maintenance of single-cell dispersion and the levels of polymerized actin in the cells. These findings suggest that treatment with a polymer-peptide like PEG-GRGDS might provide a promising platform for the short-term culture of non-adherent single PHs.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s10616-024-00696-1.</p>\",\"PeriodicalId\":10890,\"journal\":{\"name\":\"Cytotechnology\",\"volume\":\"77 1\",\"pages\":\"30\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11685352/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cytotechnology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10616-024-00696-1\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytotechnology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10616-024-00696-1","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/30 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

原代肝细胞在研究肝功能、药物筛选和再生医学中是不可或缺的。然而,新鲜分离的小细菌在非贴壁悬浮培养中只能存活几个小时。本研究提出用聚乙二醇(PEG)和五肽序列Gly-Arg-Gly-Asp-Ser (GRGDS)组成的聚肽偶联物PEG-GRGDS处理,以维持分散的单个ph在非粘附条件下的生存能力。作为概念的证明,用PEG-GRGDS分子处理的小灵通在单细胞大小的微孔微阵列中培养。培养24小时后,通过酯酶活性和细胞色素P450 1A1 (CYP1A1)活性证实细胞存活增强。在治疗的小灵通中观察到一些肝脏特异性功能,包括白蛋白分泌。此外,观察到缀合物中peg链的长度影响单细胞分散的维持和细胞中聚合肌动蛋白的水平。这些发现表明,用聚肽类PEG-GRGDS治疗可能为短期培养非粘附的单个ph提供了一个有希望的平台。补充信息:在线版本包含补充资料,可在10.1007/s10616-024-00696-1获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Proposal for a non-adhesive single-cell culture technology for primary hepatocytes.

Primary hepatocytes (PHs) are indispensable for studying liver function, drug screening, and regenerative medicine. However, freshly isolated PHs only survive for a few hours in non-adherent suspension culture. This study proposes treatment with PEG-GRGDS, a polymer-peptide conjugate comprising polyethylene glycol (PEG) and the pentapeptide sequence Gly-Arg-Gly-Asp-Ser (GRGDS), to sustain the viability of dispersed single PHs under non-adherent conditions. As a proof of concept, PHs treated with the PEG-GRGDS molecule were cultured in a microarray with single-cell-sized microwells. After 24 h of culture, enhanced cell survival was confirmed via esterase activity alongside activity for Cytochrome P450 1A1 (CYP1A1). Some liver-specific functionalities, including albumin secretion, were observed in the treated PHs. Additionally, it was observed that the length of the PEG-chain in the conjugates influenced the maintenance of single-cell dispersion and the levels of polymerized actin in the cells. These findings suggest that treatment with a polymer-peptide like PEG-GRGDS might provide a promising platform for the short-term culture of non-adherent single PHs.

Supplementary information: The online version contains supplementary material available at 10.1007/s10616-024-00696-1.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cytotechnology
Cytotechnology 生物-生物工程与应用微生物
CiteScore
4.10
自引率
0.00%
发文量
49
审稿时长
6-12 weeks
期刊介绍: The scope of the Journal includes: 1. The derivation, genetic modification and characterization of cell lines, genetic and phenotypic regulation, control of cellular metabolism, cell physiology and biochemistry related to cell function, performance and expression of cell products. 2. Cell culture techniques, substrates, environmental requirements and optimization, cloning, hybridization and molecular biology, including genomic and proteomic tools. 3. Cell culture systems, processes, reactors, scale-up, and industrial production. Descriptions of the design or construction of equipment, media or quality control procedures, that are ancillary to cellular research. 4. The application of animal/human cells in research in the field of stem cell research including maintenance of stemness, differentiation, genetics, and senescence, cancer research, research in immunology, as well as applications in tissue engineering and gene therapy. 5. The use of cell cultures as a substrate for bioassays, biomedical applications and in particular as a replacement for animal models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信