{"title":"利用基因组尺度代谢模型和宏基因组学进行个性化肠道微生物群落建模。","authors":"Longtao Li, Jens Nielsen, Yu Chen","doi":"10.1016/j.copbio.2024.103248","DOIUrl":null,"url":null,"abstract":"<p><p>The impact of the gut microbiome on human health is increasingly recognized as dysbiosis has been found to be associated with a spectrum of diseases. Here, we review the databases of genome-scale metabolic models (GEMs), which have paved the way for investigations into the metabolic capabilities of gut microbes and their interspecies dynamics. We further discuss the strategies for developing community-level GEMs, which are crucial for understanding the complex interactions within microbial communities and between the microbiome and its host. Such GEMs can guide the design of synthetic microbial communities for disease treatment. Finally, we explore advances in personalized gut microbiome modeling. These advancements broaden our mechanistic understanding and hold promise for applications in precision medicine and therapeutic interventions.</p>","PeriodicalId":10833,"journal":{"name":"Current opinion in biotechnology","volume":"91 ","pages":"103248"},"PeriodicalIF":7.1000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Personalized gut microbial community modeling by leveraging genome-scale metabolic models and metagenomics.\",\"authors\":\"Longtao Li, Jens Nielsen, Yu Chen\",\"doi\":\"10.1016/j.copbio.2024.103248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The impact of the gut microbiome on human health is increasingly recognized as dysbiosis has been found to be associated with a spectrum of diseases. Here, we review the databases of genome-scale metabolic models (GEMs), which have paved the way for investigations into the metabolic capabilities of gut microbes and their interspecies dynamics. We further discuss the strategies for developing community-level GEMs, which are crucial for understanding the complex interactions within microbial communities and between the microbiome and its host. Such GEMs can guide the design of synthetic microbial communities for disease treatment. Finally, we explore advances in personalized gut microbiome modeling. These advancements broaden our mechanistic understanding and hold promise for applications in precision medicine and therapeutic interventions.</p>\",\"PeriodicalId\":10833,\"journal\":{\"name\":\"Current opinion in biotechnology\",\"volume\":\"91 \",\"pages\":\"103248\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current opinion in biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.copbio.2024.103248\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.copbio.2024.103248","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Personalized gut microbial community modeling by leveraging genome-scale metabolic models and metagenomics.
The impact of the gut microbiome on human health is increasingly recognized as dysbiosis has been found to be associated with a spectrum of diseases. Here, we review the databases of genome-scale metabolic models (GEMs), which have paved the way for investigations into the metabolic capabilities of gut microbes and their interspecies dynamics. We further discuss the strategies for developing community-level GEMs, which are crucial for understanding the complex interactions within microbial communities and between the microbiome and its host. Such GEMs can guide the design of synthetic microbial communities for disease treatment. Finally, we explore advances in personalized gut microbiome modeling. These advancements broaden our mechanistic understanding and hold promise for applications in precision medicine and therapeutic interventions.
期刊介绍:
Current Opinion in Biotechnology (COBIOT) is renowned for publishing authoritative, comprehensive, and systematic reviews. By offering clear and readable syntheses of current advances in biotechnology, COBIOT assists specialists in staying updated on the latest developments in the field. Expert authors annotate the most noteworthy papers from the vast array of information available today, providing readers with valuable insights and saving them time.
As part of the Current Opinion and Research (CO+RE) suite of journals, COBIOT is accompanied by the open-access primary research journal, Current Research in Biotechnology (CRBIOT). Leveraging the editorial excellence, high impact, and global reach of the Current Opinion legacy, CO+RE journals ensure they are widely read resources integral to scientists' workflows.
COBIOT is organized into themed sections, each reviewed once a year. These themes cover various areas of biotechnology, including analytical biotechnology, plant biotechnology, food biotechnology, energy biotechnology, environmental biotechnology, systems biology, nanobiotechnology, tissue, cell, and pathway engineering, chemical biotechnology, and pharmaceutical biotechnology.