{"title":"靶向纳米探针用于三阴性乳腺癌的精确治疗。","authors":"Ke Ma, Meng Yin, Ke-Zheng Chen, Sheng-Lin Qiao","doi":"10.1002/tcr.202400171","DOIUrl":null,"url":null,"abstract":"<p><p>Triple-negative breast cancer (TNBC) represents a highly aggressive and prognostically unfavorable subtype of breast cancer, characterized by the absence of common hormone receptors, which renders conventional therapies largely ineffective. This review comprehensively examines the molecular and clinical characteristics of TNBC, underscoring the substantial challenges inherent in its treatment and the innovative potential of targeted nanoprobes in advancing both diagnostic and therapeutic paradigms. Through the modification of targeting molecules, nanoprobes can deliver therapeutic agents highly specific to TNBC cells, thus significantly improving the sensitivity of diagnostic modalities and the efficacy of therapeutic interventions. Our discussion systematically explores the application of various targeting molecules and their advantages and limitations. In addition, this review presents a series of multifunctional targeted nanoprobes that are designed to perform both diagnostic and therapeutic functions, thus providing a synergistic approach to the treatment of TNBC. These advanced nanoprobes enable precise tumor localization while monitoring the therapeutic response in real time, thus facilitating a more personalized and dynamic treatment regimen. The major obstacles encountered during clinical translation are discussed in detail. The use of targeted nanoprobes represents a major leap forward in personalized medicine for TNBC, and current research efforts will continue to refine these technologies to improve clinical applicability.</p>","PeriodicalId":10046,"journal":{"name":"Chemical record","volume":" ","pages":"e202400171"},"PeriodicalIF":7.0000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Targeted Nanoprobes Enabled Precision Theranostics in Triple-Negative Breast Cancer.\",\"authors\":\"Ke Ma, Meng Yin, Ke-Zheng Chen, Sheng-Lin Qiao\",\"doi\":\"10.1002/tcr.202400171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Triple-negative breast cancer (TNBC) represents a highly aggressive and prognostically unfavorable subtype of breast cancer, characterized by the absence of common hormone receptors, which renders conventional therapies largely ineffective. This review comprehensively examines the molecular and clinical characteristics of TNBC, underscoring the substantial challenges inherent in its treatment and the innovative potential of targeted nanoprobes in advancing both diagnostic and therapeutic paradigms. Through the modification of targeting molecules, nanoprobes can deliver therapeutic agents highly specific to TNBC cells, thus significantly improving the sensitivity of diagnostic modalities and the efficacy of therapeutic interventions. Our discussion systematically explores the application of various targeting molecules and their advantages and limitations. In addition, this review presents a series of multifunctional targeted nanoprobes that are designed to perform both diagnostic and therapeutic functions, thus providing a synergistic approach to the treatment of TNBC. These advanced nanoprobes enable precise tumor localization while monitoring the therapeutic response in real time, thus facilitating a more personalized and dynamic treatment regimen. The major obstacles encountered during clinical translation are discussed in detail. The use of targeted nanoprobes represents a major leap forward in personalized medicine for TNBC, and current research efforts will continue to refine these technologies to improve clinical applicability.</p>\",\"PeriodicalId\":10046,\"journal\":{\"name\":\"Chemical record\",\"volume\":\" \",\"pages\":\"e202400171\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2025-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical record\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/tcr.202400171\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical record","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/tcr.202400171","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Targeted Nanoprobes Enabled Precision Theranostics in Triple-Negative Breast Cancer.
Triple-negative breast cancer (TNBC) represents a highly aggressive and prognostically unfavorable subtype of breast cancer, characterized by the absence of common hormone receptors, which renders conventional therapies largely ineffective. This review comprehensively examines the molecular and clinical characteristics of TNBC, underscoring the substantial challenges inherent in its treatment and the innovative potential of targeted nanoprobes in advancing both diagnostic and therapeutic paradigms. Through the modification of targeting molecules, nanoprobes can deliver therapeutic agents highly specific to TNBC cells, thus significantly improving the sensitivity of diagnostic modalities and the efficacy of therapeutic interventions. Our discussion systematically explores the application of various targeting molecules and their advantages and limitations. In addition, this review presents a series of multifunctional targeted nanoprobes that are designed to perform both diagnostic and therapeutic functions, thus providing a synergistic approach to the treatment of TNBC. These advanced nanoprobes enable precise tumor localization while monitoring the therapeutic response in real time, thus facilitating a more personalized and dynamic treatment regimen. The major obstacles encountered during clinical translation are discussed in detail. The use of targeted nanoprobes represents a major leap forward in personalized medicine for TNBC, and current research efforts will continue to refine these technologies to improve clinical applicability.
期刊介绍:
The Chemical Record (TCR) is a "highlights" journal publishing timely and critical overviews of new developments at the cutting edge of chemistry of interest to a wide audience of chemists (2013 journal impact factor: 5.577). The scope of published reviews includes all areas related to physical chemistry, analytical chemistry, inorganic chemistry, organic chemistry, polymer chemistry, materials chemistry, bioorganic chemistry, biochemistry, biotechnology and medicinal chemistry as well as interdisciplinary fields.
TCR provides carefully selected highlight papers by leading researchers that introduce the author''s own experimental and theoretical results in a framework designed to establish perspectives with earlier and contemporary work and provide a critical review of the present state of the subject. The articles are intended to present concise evaluations of current trends in chemistry research to help chemists gain useful insights into fields outside their specialization and provide experts with summaries of recent key developments.