{"title":"由DNA合成的离子通道。","authors":"Ran Tivony","doi":"10.1016/j.cbpa.2024.102567","DOIUrl":null,"url":null,"abstract":"<div><div>Natural ion channels have long inspired the design of synthetic nanopores with protein-like features. A significant leap towards this endeavor has been made possible using DNA origami. The exploitation of DNA as a building material has enabled the construction of biomimetic DNA nanopores with a range of pore dimensions and stimuli-responsive capabilities. However, structural fluctuations and ion leakage across the walls of DNA nanopores greatly limit their use in various applications like label-free sensing and as a research tool in functional studies of ion channels. This review outlines some of the guiding principles for biomimetic engineering of DNA-based ion channels, discusses the weaknesses of current DNA nanopore designs, and presents recent efforts to alleviate these limitations.</div></div>","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"84 ","pages":"Article 102567"},"PeriodicalIF":6.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthetic ion channels made of DNA\",\"authors\":\"Ran Tivony\",\"doi\":\"10.1016/j.cbpa.2024.102567\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Natural ion channels have long inspired the design of synthetic nanopores with protein-like features. A significant leap towards this endeavor has been made possible using DNA origami. The exploitation of DNA as a building material has enabled the construction of biomimetic DNA nanopores with a range of pore dimensions and stimuli-responsive capabilities. However, structural fluctuations and ion leakage across the walls of DNA nanopores greatly limit their use in various applications like label-free sensing and as a research tool in functional studies of ion channels. This review outlines some of the guiding principles for biomimetic engineering of DNA-based ion channels, discusses the weaknesses of current DNA nanopore designs, and presents recent efforts to alleviate these limitations.</div></div>\",\"PeriodicalId\":291,\"journal\":{\"name\":\"Current Opinion in Chemical Biology\",\"volume\":\"84 \",\"pages\":\"Article 102567\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Chemical Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1367593124001431\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1367593124001431","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Natural ion channels have long inspired the design of synthetic nanopores with protein-like features. A significant leap towards this endeavor has been made possible using DNA origami. The exploitation of DNA as a building material has enabled the construction of biomimetic DNA nanopores with a range of pore dimensions and stimuli-responsive capabilities. However, structural fluctuations and ion leakage across the walls of DNA nanopores greatly limit their use in various applications like label-free sensing and as a research tool in functional studies of ion channels. This review outlines some of the guiding principles for biomimetic engineering of DNA-based ion channels, discusses the weaknesses of current DNA nanopore designs, and presents recent efforts to alleviate these limitations.
期刊介绍:
COCHBI (Current Opinion in Chemical Biology) is a systematic review journal designed to offer specialists a unique and educational platform. Its goal is to help professionals stay informed about the growing volume of information in the field of Chemical Biology through systematic reviews.