{"title":"废茶碳量子点在茶叶农药检测中的应用:一种新型生物传感器方法。","authors":"Nitu Sinha, Sonali Ray","doi":"10.1021/acsomega.4c04449","DOIUrl":null,"url":null,"abstract":"<p><p>Chemical pesticide residues have negative consequences for human health and the environment. Prioritizing a detection method that is both reliable and efficient is essential. Our innovative research explored the application of biosensors based on carbon quantum dots (CQDs) derived from waste tea to detect commonly used pesticides in tea. CQDs have been synthesized using a simple one-pot hydrothermal approach and thoroughly characterized using advanced techniques such as high-resolution transmission electron microscopy, ultraviolet-visible spectroscopy, photoluminescence (PL) spectroscopy, Raman spectroscopy, X-ray diffraction, atomic force microscopy, and X-ray photoelectron spectroscopy. The fluorescence resonance energy transfer-based fluorescence \"turn on-off\" mechanism has been successfully employed to study the detection of four different pesticides, viz., quinalphos 25 EC, thiamethoxam 25 WG, propargite 57 EC, and hexaconazole 5 EC. The detection limits for quinalphos 25 EC, thiamethoxam 25 WG, and propargite 57 EC were determined to be 0.2, 1, and 10 ng/mL, respectively. Notably, these values are significantly lower than the maximum residue level for each pesticide. We achieved a strong linear correlation (<i>R</i> = -0.96) with a detection limit of 0.2 ng/mL for quinalphos 25 EC. The quantum yield was determined to be 40.05%. Our research demonstrates that the developed nanobiosensor reliably and accurately detects pesticides, including those present in experimental samples containing mixtures of pesticides.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"9 51","pages":"50201-50213"},"PeriodicalIF":4.3000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11683644/pdf/","citationCount":"0","resultStr":"{\"title\":\"Application of Carbon Quantum Dots Derived from Waste Tea for the Detection of Pesticides in Tea: A Novel Biosensor Approach.\",\"authors\":\"Nitu Sinha, Sonali Ray\",\"doi\":\"10.1021/acsomega.4c04449\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chemical pesticide residues have negative consequences for human health and the environment. Prioritizing a detection method that is both reliable and efficient is essential. Our innovative research explored the application of biosensors based on carbon quantum dots (CQDs) derived from waste tea to detect commonly used pesticides in tea. CQDs have been synthesized using a simple one-pot hydrothermal approach and thoroughly characterized using advanced techniques such as high-resolution transmission electron microscopy, ultraviolet-visible spectroscopy, photoluminescence (PL) spectroscopy, Raman spectroscopy, X-ray diffraction, atomic force microscopy, and X-ray photoelectron spectroscopy. The fluorescence resonance energy transfer-based fluorescence \\\"turn on-off\\\" mechanism has been successfully employed to study the detection of four different pesticides, viz., quinalphos 25 EC, thiamethoxam 25 WG, propargite 57 EC, and hexaconazole 5 EC. The detection limits for quinalphos 25 EC, thiamethoxam 25 WG, and propargite 57 EC were determined to be 0.2, 1, and 10 ng/mL, respectively. Notably, these values are significantly lower than the maximum residue level for each pesticide. We achieved a strong linear correlation (<i>R</i> = -0.96) with a detection limit of 0.2 ng/mL for quinalphos 25 EC. The quantum yield was determined to be 40.05%. Our research demonstrates that the developed nanobiosensor reliably and accurately detects pesticides, including those present in experimental samples containing mixtures of pesticides.</p>\",\"PeriodicalId\":22,\"journal\":{\"name\":\"ACS Omega\",\"volume\":\"9 51\",\"pages\":\"50201-50213\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11683644/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Omega\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acsomega.4c04449\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/24 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acsomega.4c04449","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/24 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Application of Carbon Quantum Dots Derived from Waste Tea for the Detection of Pesticides in Tea: A Novel Biosensor Approach.
Chemical pesticide residues have negative consequences for human health and the environment. Prioritizing a detection method that is both reliable and efficient is essential. Our innovative research explored the application of biosensors based on carbon quantum dots (CQDs) derived from waste tea to detect commonly used pesticides in tea. CQDs have been synthesized using a simple one-pot hydrothermal approach and thoroughly characterized using advanced techniques such as high-resolution transmission electron microscopy, ultraviolet-visible spectroscopy, photoluminescence (PL) spectroscopy, Raman spectroscopy, X-ray diffraction, atomic force microscopy, and X-ray photoelectron spectroscopy. The fluorescence resonance energy transfer-based fluorescence "turn on-off" mechanism has been successfully employed to study the detection of four different pesticides, viz., quinalphos 25 EC, thiamethoxam 25 WG, propargite 57 EC, and hexaconazole 5 EC. The detection limits for quinalphos 25 EC, thiamethoxam 25 WG, and propargite 57 EC were determined to be 0.2, 1, and 10 ng/mL, respectively. Notably, these values are significantly lower than the maximum residue level for each pesticide. We achieved a strong linear correlation (R = -0.96) with a detection limit of 0.2 ng/mL for quinalphos 25 EC. The quantum yield was determined to be 40.05%. Our research demonstrates that the developed nanobiosensor reliably and accurately detects pesticides, including those present in experimental samples containing mixtures of pesticides.
ACS OmegaChemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍:
ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.