基于Radon累积分布变换的平流占优问题降阶模型

IF 1.7 3区 数学 Q2 MATHEMATICS, APPLIED
Tobias Long, Robert Barnett, Richard Jefferson-Loveday, Giovanni Stabile, Matteo Icardi
{"title":"基于Radon累积分布变换的平流占优问题降阶模型","authors":"Tobias Long,&nbsp;Robert Barnett,&nbsp;Richard Jefferson-Loveday,&nbsp;Giovanni Stabile,&nbsp;Matteo Icardi","doi":"10.1007/s10444-024-10209-5","DOIUrl":null,"url":null,"abstract":"<div><p>Problems with dominant advection, discontinuities, travelling features, or shape variations are widespread in computational mechanics. However, classical linear model reduction and interpolation methods typically fail to reproduce even relatively small parameter variations, making the reduced models inefficient and inaccurate. This work proposes a model order reduction approach based on the Radon Cumulative Distribution Transform (RCDT). We demonstrate numerically that this non-linear transformation can overcome some limitations of standard proper orthogonal decomposition (POD) reconstructions and is capable of interpolating accurately some advection-dominated phenomena, although it may introduce artefacts due to the discrete forward and inverse transform. The method is tested on various test cases coming from both manufactured examples and fluid dynamics problems.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"51 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A reduced-order model for advection-dominated problems based on the Radon Cumulative Distribution Transform\",\"authors\":\"Tobias Long,&nbsp;Robert Barnett,&nbsp;Richard Jefferson-Loveday,&nbsp;Giovanni Stabile,&nbsp;Matteo Icardi\",\"doi\":\"10.1007/s10444-024-10209-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Problems with dominant advection, discontinuities, travelling features, or shape variations are widespread in computational mechanics. However, classical linear model reduction and interpolation methods typically fail to reproduce even relatively small parameter variations, making the reduced models inefficient and inaccurate. This work proposes a model order reduction approach based on the Radon Cumulative Distribution Transform (RCDT). We demonstrate numerically that this non-linear transformation can overcome some limitations of standard proper orthogonal decomposition (POD) reconstructions and is capable of interpolating accurately some advection-dominated phenomena, although it may introduce artefacts due to the discrete forward and inverse transform. The method is tested on various test cases coming from both manufactured examples and fluid dynamics problems.</p></div>\",\"PeriodicalId\":50869,\"journal\":{\"name\":\"Advances in Computational Mathematics\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Computational Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10444-024-10209-5\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10444-024-10209-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

以平流、不连续、移动特征或形状变化为主导的问题在计算力学中广泛存在。然而,经典的线性模型约简和插值方法通常无法再现即使是相对较小的参数变化,使得简化的模型效率低下且不准确。本文提出了一种基于Radon累积分布变换(RCDT)的模型降阶方法。数值证明了这种非线性变换可以克服标准固有正交分解(POD)重构的一些局限性,并且能够准确地插值一些平流为主的现象,尽管它可能会由于正反变换的离散而引入伪影。该方法在来自制造实例和流体动力学问题的各种测试用例上进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A reduced-order model for advection-dominated problems based on the Radon Cumulative Distribution Transform

Problems with dominant advection, discontinuities, travelling features, or shape variations are widespread in computational mechanics. However, classical linear model reduction and interpolation methods typically fail to reproduce even relatively small parameter variations, making the reduced models inefficient and inaccurate. This work proposes a model order reduction approach based on the Radon Cumulative Distribution Transform (RCDT). We demonstrate numerically that this non-linear transformation can overcome some limitations of standard proper orthogonal decomposition (POD) reconstructions and is capable of interpolating accurately some advection-dominated phenomena, although it may introduce artefacts due to the discrete forward and inverse transform. The method is tested on various test cases coming from both manufactured examples and fluid dynamics problems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
5.90%
发文量
68
审稿时长
3 months
期刊介绍: Advances in Computational Mathematics publishes high quality, accessible and original articles at the forefront of computational and applied mathematics, with a clear potential for impact across the sciences. The journal emphasizes three core areas: approximation theory and computational geometry; numerical analysis, modelling and simulation; imaging, signal processing and data analysis. This journal welcomes papers that are accessible to a broad audience in the mathematical sciences and that show either an advance in computational methodology or a novel scientific application area, or both. Methods papers should rely on rigorous analysis and/or convincing numerical studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信