主动运动的搭便车指南

IF 1.8 4区 物理与天体物理 Q4 CHEMISTRY, PHYSICAL
Tobias Plasczyk, Paul A. Monderkamp, Hartmut Löwen, René Wittmann
{"title":"主动运动的搭便车指南","authors":"Tobias Plasczyk,&nbsp;Paul A. Monderkamp,&nbsp;Hartmut Löwen,&nbsp;René Wittmann","doi":"10.1140/epje/s10189-024-00465-0","DOIUrl":null,"url":null,"abstract":"<p>Intelligent decisions in response to external informative input can allow organisms to achieve their biological goals while spending very little of their own resources. In this paper, we develop and study a minimal model for a navigational task, performed by an otherwise completely motorless particle that possesses the ability of <i>hitchhiking</i> in a bath of active Brownian particles (ABPs). Hitchhiking refers to identifying and attaching to suitable surrounding bath particles. Using a reinforcement learning algorithm, such an agent, which we refer to as intelligent hitchhiking particle (IHP), is enabled to persistently navigate in the desired direction. This relatively simple IHP can also anticipate and react to characteristic motion patterns of their hosts, which we exemplify for a bath of chiral ABPs (cABPs). To demonstrate that the persistent motion of the IHP will outperform that of the bath particles in view of long-time ballistic motion, we calculate the mean-squared displacement and discuss its dependence on the density and persistence time of the bath ABPs by means of an analytic model.</p><p>Illustration of an intelligent hitchhiking particle (IHP) in a bath of active Brownian particles (ABPs). The IHP fulfills a navigational task by holding on to an ABP only if its orientation points upwards, enabling persistent motion.</p>","PeriodicalId":790,"journal":{"name":"The European Physical Journal E","volume":"48 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epje/s10189-024-00465-0.pdf","citationCount":"0","resultStr":"{\"title\":\"A hitchhiker’s guide to active motion\",\"authors\":\"Tobias Plasczyk,&nbsp;Paul A. Monderkamp,&nbsp;Hartmut Löwen,&nbsp;René Wittmann\",\"doi\":\"10.1140/epje/s10189-024-00465-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Intelligent decisions in response to external informative input can allow organisms to achieve their biological goals while spending very little of their own resources. In this paper, we develop and study a minimal model for a navigational task, performed by an otherwise completely motorless particle that possesses the ability of <i>hitchhiking</i> in a bath of active Brownian particles (ABPs). Hitchhiking refers to identifying and attaching to suitable surrounding bath particles. Using a reinforcement learning algorithm, such an agent, which we refer to as intelligent hitchhiking particle (IHP), is enabled to persistently navigate in the desired direction. This relatively simple IHP can also anticipate and react to characteristic motion patterns of their hosts, which we exemplify for a bath of chiral ABPs (cABPs). To demonstrate that the persistent motion of the IHP will outperform that of the bath particles in view of long-time ballistic motion, we calculate the mean-squared displacement and discuss its dependence on the density and persistence time of the bath ABPs by means of an analytic model.</p><p>Illustration of an intelligent hitchhiking particle (IHP) in a bath of active Brownian particles (ABPs). The IHP fulfills a navigational task by holding on to an ABP only if its orientation points upwards, enabling persistent motion.</p>\",\"PeriodicalId\":790,\"journal\":{\"name\":\"The European Physical Journal E\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1140/epje/s10189-024-00465-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal E\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epje/s10189-024-00465-0\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal E","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epje/s10189-024-00465-0","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

响应外部信息输入的智能决策可以使生物体在花费很少的自身资源的情况下实现其生物目标。在本文中,我们开发和研究了一个导航任务的最小模型,该模型由一个完全无运动的粒子执行,该粒子具有搭便车活动布朗粒子(ABPs)浴的能力。搭便车是指识别并附着在周围合适的浴液颗粒上。使用强化学习算法,这样的代理,我们称之为智能搭便车粒子(IHP),能够持续地在期望的方向上导航。这种相对简单的IHP还可以预测并对宿主的特征运动模式做出反应,我们以手性ABPs (cABPs)为例。考虑到长时间的弹道运动,为了证明射流粒子的持续运动优于熔池粒子的持续运动,我们计算了均方位移,并通过解析模型讨论了其与熔池射流粒子密度和持续时间的关系。智能搭便车粒子(IHP)在活跃布朗粒子(ABPs)浴中的图示。只有当ABP的方向指向上方时,IHP才会抓住它来完成导航任务,从而实现持续运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A hitchhiker’s guide to active motion

Intelligent decisions in response to external informative input can allow organisms to achieve their biological goals while spending very little of their own resources. In this paper, we develop and study a minimal model for a navigational task, performed by an otherwise completely motorless particle that possesses the ability of hitchhiking in a bath of active Brownian particles (ABPs). Hitchhiking refers to identifying and attaching to suitable surrounding bath particles. Using a reinforcement learning algorithm, such an agent, which we refer to as intelligent hitchhiking particle (IHP), is enabled to persistently navigate in the desired direction. This relatively simple IHP can also anticipate and react to characteristic motion patterns of their hosts, which we exemplify for a bath of chiral ABPs (cABPs). To demonstrate that the persistent motion of the IHP will outperform that of the bath particles in view of long-time ballistic motion, we calculate the mean-squared displacement and discuss its dependence on the density and persistence time of the bath ABPs by means of an analytic model.

Illustration of an intelligent hitchhiking particle (IHP) in a bath of active Brownian particles (ABPs). The IHP fulfills a navigational task by holding on to an ABP only if its orientation points upwards, enabling persistent motion.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The European Physical Journal E
The European Physical Journal E CHEMISTRY, PHYSICAL-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
2.60
自引率
5.60%
发文量
92
审稿时长
3 months
期刊介绍: EPJ E publishes papers describing advances in the understanding of physical aspects of Soft, Liquid and Living Systems. Soft matter is a generic term for a large group of condensed, often heterogeneous systems -- often also called complex fluids -- that display a large response to weak external perturbations and that possess properties governed by slow internal dynamics. Flowing matter refers to all systems that can actually flow, from simple to multiphase liquids, from foams to granular matter. Living matter concerns the new physics that emerges from novel insights into the properties and behaviours of living systems. Furthermore, it aims at developing new concepts and quantitative approaches for the study of biological phenomena. Approaches from soft matter physics and statistical physics play a key role in this research. The journal includes reports of experimental, computational and theoretical studies and appeals to the broad interdisciplinary communities including physics, chemistry, biology, mathematics and materials science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信