复杂流体和生命过程中粘度的外在和内在影响:基本物理常数的作用

IF 1.8 4区 物理与天体物理 Q4 CHEMISTRY, PHYSICAL
K. Trachenko, P. G. Tello, S. A. Kauffman, S. Succi
{"title":"复杂流体和生命过程中粘度的外在和内在影响:基本物理常数的作用","authors":"K. Trachenko,&nbsp;P. G. Tello,&nbsp;S. A. Kauffman,&nbsp;S. Succi","doi":"10.1140/epje/s10189-024-00467-y","DOIUrl":null,"url":null,"abstract":"<p>Understanding the values and origin of fundamental physical constants, one of the grandest challenges in modern science, has been discussed in particle physics, astronomy and cosmology. More recently, it was realized that fundamental constants have a biofriendly window set by life processes involving motion and flow. This window is related to intrinsic fluid properties such as energy and length scales in condensed matter set by fundamental constants. Here, we discuss important extrinsic factors governing the viscosity of complex fluids operating in life processes due to collective effects. We show that both extrinsic and intrinsic factors affecting viscosity need to be taken into account when estimating the biofriendly range of fundamental constants from life processes, and our discussion provides a straightforward recipe for doing this. Remarkably, the viscosity of a complex fluid such as blood with significant extrinsic effects is not far from the intrinsic viscosity calculated using the fundamental constants only, and we discuss the reason for this in terms of dynamics of contact points between cells.</p>","PeriodicalId":790,"journal":{"name":"The European Physical Journal E","volume":"48 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epje/s10189-024-00467-y.pdf","citationCount":"0","resultStr":"{\"title\":\"Extrinsic and intrinsic effects setting viscosity in complex fluids and life processes: the role of fundamental physical constants\",\"authors\":\"K. Trachenko,&nbsp;P. G. Tello,&nbsp;S. A. Kauffman,&nbsp;S. Succi\",\"doi\":\"10.1140/epje/s10189-024-00467-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Understanding the values and origin of fundamental physical constants, one of the grandest challenges in modern science, has been discussed in particle physics, astronomy and cosmology. More recently, it was realized that fundamental constants have a biofriendly window set by life processes involving motion and flow. This window is related to intrinsic fluid properties such as energy and length scales in condensed matter set by fundamental constants. Here, we discuss important extrinsic factors governing the viscosity of complex fluids operating in life processes due to collective effects. We show that both extrinsic and intrinsic factors affecting viscosity need to be taken into account when estimating the biofriendly range of fundamental constants from life processes, and our discussion provides a straightforward recipe for doing this. Remarkably, the viscosity of a complex fluid such as blood with significant extrinsic effects is not far from the intrinsic viscosity calculated using the fundamental constants only, and we discuss the reason for this in terms of dynamics of contact points between cells.</p>\",\"PeriodicalId\":790,\"journal\":{\"name\":\"The European Physical Journal E\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1140/epje/s10189-024-00467-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal E\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epje/s10189-024-00467-y\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal E","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epje/s10189-024-00467-y","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

理解基本物理常数的值和起源是现代科学中最大的挑战之一,在粒子物理学、天文学和宇宙学中都有讨论。最近,人们意识到,基本常数有一个生物友好的窗口,由涉及运动和流动的生命过程设置。这个窗口与固有的流体性质有关,如由基本常数设定的凝聚态物质的能量和长度尺度。在这里,我们讨论了在生命过程中由于集体效应而控制复杂流体粘度的重要外在因素。我们表明,在估计生命过程中基本常数的生物友好范围时,需要考虑影响粘度的外在因素和内在因素,我们的讨论为这样做提供了一个简单的方法。值得注意的是,具有显著外在效应的复杂流体(如血液)的粘度与仅使用基本常数计算的本征粘度相差不远,我们从细胞间接触点的动力学角度讨论了这一现象的原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extrinsic and intrinsic effects setting viscosity in complex fluids and life processes: the role of fundamental physical constants

Understanding the values and origin of fundamental physical constants, one of the grandest challenges in modern science, has been discussed in particle physics, astronomy and cosmology. More recently, it was realized that fundamental constants have a biofriendly window set by life processes involving motion and flow. This window is related to intrinsic fluid properties such as energy and length scales in condensed matter set by fundamental constants. Here, we discuss important extrinsic factors governing the viscosity of complex fluids operating in life processes due to collective effects. We show that both extrinsic and intrinsic factors affecting viscosity need to be taken into account when estimating the biofriendly range of fundamental constants from life processes, and our discussion provides a straightforward recipe for doing this. Remarkably, the viscosity of a complex fluid such as blood with significant extrinsic effects is not far from the intrinsic viscosity calculated using the fundamental constants only, and we discuss the reason for this in terms of dynamics of contact points between cells.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The European Physical Journal E
The European Physical Journal E CHEMISTRY, PHYSICAL-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
2.60
自引率
5.60%
发文量
92
审稿时长
3 months
期刊介绍: EPJ E publishes papers describing advances in the understanding of physical aspects of Soft, Liquid and Living Systems. Soft matter is a generic term for a large group of condensed, often heterogeneous systems -- often also called complex fluids -- that display a large response to weak external perturbations and that possess properties governed by slow internal dynamics. Flowing matter refers to all systems that can actually flow, from simple to multiphase liquids, from foams to granular matter. Living matter concerns the new physics that emerges from novel insights into the properties and behaviours of living systems. Furthermore, it aims at developing new concepts and quantitative approaches for the study of biological phenomena. Approaches from soft matter physics and statistical physics play a key role in this research. The journal includes reports of experimental, computational and theoretical studies and appeals to the broad interdisciplinary communities including physics, chemistry, biology, mathematics and materials science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信