Gurbir Kaur Sidhu, Rakesh Pandey, Gurdeep Kaur, Anjulata Singh, Sangram K. Lenka, Pallavolu M. Reddy
{"title":"在水稻叶绿体中组装功能蓝藻β-羧酸体的研究","authors":"Gurbir Kaur Sidhu, Rakesh Pandey, Gurdeep Kaur, Anjulata Singh, Sangram K. Lenka, Pallavolu M. Reddy","doi":"10.1007/s10142-024-01518-5","DOIUrl":null,"url":null,"abstract":"<div><p>The major limiting factor of photosynthesis in C3 plants is the enzyme, rubisco which inadequately distinguishes between carbon dioxide and oxygen. To overcome catalytic deficiencies of Rubisco, cyanobacteria utilize advanced protein microcompartments, called the carboxysomes which envelopes the enzymes, Rubisco and Carbonic Anhydrase (CA). These microcompartments facilitate the diffusion of bicarbonate ions which are converted to CO<sub>2</sub> by CA, following in an increase in carbon flux near Rubisco boosting CO<sub>2</sub> fixation process. Inspired by this mechanism, our study aims to improve photosynthetic efficiency in the C<sub>3</sub> model crop, rice (<i>Oryza sativa</i>), by stably engineering the genetic components of the β-carboxysome of <i>Synechococcus elongatus</i> PCC 7942 (hereafter, Syn7942) in the rice genome. We demonstrated this proof of concept by developing two types of transgenic rice plants. The first type involved targeting the chloroplasts with three key carboxysome structural proteins (<i>ccmL</i>, <i>ccmO</i>, and <i>ccmK</i>) and a chimeric protein (<i>ccmC</i>), which integrates domains from four distinct carboxysome proteins. The second type combined these proteins with the introduction of cyanobacterial Rubisco targeted to chloroplasts. Additionally, in the second transgenic background, RNA interference was employed to silence the endogenous rice Rubisco along with stromal carbonic anhydrase gene. The transgenic plants exhibited the assembly of carboxysome-like compartments and aggregated proteins in the chloroplasts and the second type demonstrated reduced plant growth and yield. We have followed a bottom-up approach for targeting the cyanobacterial CCM in rice chloroplast which would help in stacking up the components further required for increasing the photosynthetic efficiency in future.</p></div>","PeriodicalId":574,"journal":{"name":"Functional & Integrative Genomics","volume":"25 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards assembling functional cyanobacterial β-carboxysomes in Oryza sativa chloroplasts\",\"authors\":\"Gurbir Kaur Sidhu, Rakesh Pandey, Gurdeep Kaur, Anjulata Singh, Sangram K. Lenka, Pallavolu M. Reddy\",\"doi\":\"10.1007/s10142-024-01518-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The major limiting factor of photosynthesis in C3 plants is the enzyme, rubisco which inadequately distinguishes between carbon dioxide and oxygen. To overcome catalytic deficiencies of Rubisco, cyanobacteria utilize advanced protein microcompartments, called the carboxysomes which envelopes the enzymes, Rubisco and Carbonic Anhydrase (CA). These microcompartments facilitate the diffusion of bicarbonate ions which are converted to CO<sub>2</sub> by CA, following in an increase in carbon flux near Rubisco boosting CO<sub>2</sub> fixation process. Inspired by this mechanism, our study aims to improve photosynthetic efficiency in the C<sub>3</sub> model crop, rice (<i>Oryza sativa</i>), by stably engineering the genetic components of the β-carboxysome of <i>Synechococcus elongatus</i> PCC 7942 (hereafter, Syn7942) in the rice genome. We demonstrated this proof of concept by developing two types of transgenic rice plants. The first type involved targeting the chloroplasts with three key carboxysome structural proteins (<i>ccmL</i>, <i>ccmO</i>, and <i>ccmK</i>) and a chimeric protein (<i>ccmC</i>), which integrates domains from four distinct carboxysome proteins. The second type combined these proteins with the introduction of cyanobacterial Rubisco targeted to chloroplasts. Additionally, in the second transgenic background, RNA interference was employed to silence the endogenous rice Rubisco along with stromal carbonic anhydrase gene. The transgenic plants exhibited the assembly of carboxysome-like compartments and aggregated proteins in the chloroplasts and the second type demonstrated reduced plant growth and yield. We have followed a bottom-up approach for targeting the cyanobacterial CCM in rice chloroplast which would help in stacking up the components further required for increasing the photosynthetic efficiency in future.</p></div>\",\"PeriodicalId\":574,\"journal\":{\"name\":\"Functional & Integrative Genomics\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Functional & Integrative Genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10142-024-01518-5\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional & Integrative Genomics","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10142-024-01518-5","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Towards assembling functional cyanobacterial β-carboxysomes in Oryza sativa chloroplasts
The major limiting factor of photosynthesis in C3 plants is the enzyme, rubisco which inadequately distinguishes between carbon dioxide and oxygen. To overcome catalytic deficiencies of Rubisco, cyanobacteria utilize advanced protein microcompartments, called the carboxysomes which envelopes the enzymes, Rubisco and Carbonic Anhydrase (CA). These microcompartments facilitate the diffusion of bicarbonate ions which are converted to CO2 by CA, following in an increase in carbon flux near Rubisco boosting CO2 fixation process. Inspired by this mechanism, our study aims to improve photosynthetic efficiency in the C3 model crop, rice (Oryza sativa), by stably engineering the genetic components of the β-carboxysome of Synechococcus elongatus PCC 7942 (hereafter, Syn7942) in the rice genome. We demonstrated this proof of concept by developing two types of transgenic rice plants. The first type involved targeting the chloroplasts with three key carboxysome structural proteins (ccmL, ccmO, and ccmK) and a chimeric protein (ccmC), which integrates domains from four distinct carboxysome proteins. The second type combined these proteins with the introduction of cyanobacterial Rubisco targeted to chloroplasts. Additionally, in the second transgenic background, RNA interference was employed to silence the endogenous rice Rubisco along with stromal carbonic anhydrase gene. The transgenic plants exhibited the assembly of carboxysome-like compartments and aggregated proteins in the chloroplasts and the second type demonstrated reduced plant growth and yield. We have followed a bottom-up approach for targeting the cyanobacterial CCM in rice chloroplast which would help in stacking up the components further required for increasing the photosynthetic efficiency in future.
期刊介绍:
Functional & Integrative Genomics is devoted to large-scale studies of genomes and their functions, including systems analyses of biological processes. The journal will provide the research community an integrated platform where researchers can share, review and discuss their findings on important biological questions that will ultimately enable us to answer the fundamental question: How do genomes work?