Tomo-PIV测量牛顿和聚合物湍流中的小尺度结构

IF 2.3 3区 工程技术 Q2 ENGINEERING, MECHANICAL
Feng Wang, Yi-Bao Zhang, Heng-Dong Xi
{"title":"Tomo-PIV测量牛顿和聚合物湍流中的小尺度结构","authors":"Feng Wang,&nbsp;Yi-Bao Zhang,&nbsp;Heng-Dong Xi","doi":"10.1007/s00348-024-03948-0","DOIUrl":null,"url":null,"abstract":"<div><p>The effects of polymer additives on turbulent fluid flows have attracted massive attention since the discovery of significant drag reduction by polymers in wall-bounded flows. Here we present an experimental study on the polymer–turbulence interaction at the center of the turbulent von Kármán swirling (VKS) flow system where the flow is far away from the boundary (bulk turbulence) with tomographic particle image velocimetry (Tomo-PIV). We used water–glycerol mixture to tune the viscosity of the working fluids, which facilitates us to resolve the dissipative scales and thus obtain all the nine components of the velocity gradient tensor directly. Our experiments demonstrate that at the center of the VKS flow, anisotropic properties extend from large scale to small scale, but gradually weaken with increasing Reynolds number. In polymeric turbulence, it is found that with increasing polymer concentration both the spatial averaged root mean square velocity and the average energy dissipation rate first decrease and then tend to stay at a constant value when concentration exceeds a critical value, implying that the effect of polymers saturates at high polymer concentration. We also find that the small scales become more anisotropic with the increasing concentration. The axisymmetry of small scales, however, is always retained, which can be employed to estimate the average energy dissipation rate from the planar PIV data. Moreover, we reveal that the number of the tube-like structures, the elementary structure in Newtonian turbulence, is strongly inhibited by the polymer additives, whereas the size of the tube-like structures is greatly enlarged.</p></div>","PeriodicalId":554,"journal":{"name":"Experiments in Fluids","volume":"66 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tomo-PIV measurement of small-scale structures in Newtonian and polymeric turbulence\",\"authors\":\"Feng Wang,&nbsp;Yi-Bao Zhang,&nbsp;Heng-Dong Xi\",\"doi\":\"10.1007/s00348-024-03948-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The effects of polymer additives on turbulent fluid flows have attracted massive attention since the discovery of significant drag reduction by polymers in wall-bounded flows. Here we present an experimental study on the polymer–turbulence interaction at the center of the turbulent von Kármán swirling (VKS) flow system where the flow is far away from the boundary (bulk turbulence) with tomographic particle image velocimetry (Tomo-PIV). We used water–glycerol mixture to tune the viscosity of the working fluids, which facilitates us to resolve the dissipative scales and thus obtain all the nine components of the velocity gradient tensor directly. Our experiments demonstrate that at the center of the VKS flow, anisotropic properties extend from large scale to small scale, but gradually weaken with increasing Reynolds number. In polymeric turbulence, it is found that with increasing polymer concentration both the spatial averaged root mean square velocity and the average energy dissipation rate first decrease and then tend to stay at a constant value when concentration exceeds a critical value, implying that the effect of polymers saturates at high polymer concentration. We also find that the small scales become more anisotropic with the increasing concentration. The axisymmetry of small scales, however, is always retained, which can be employed to estimate the average energy dissipation rate from the planar PIV data. Moreover, we reveal that the number of the tube-like structures, the elementary structure in Newtonian turbulence, is strongly inhibited by the polymer additives, whereas the size of the tube-like structures is greatly enlarged.</p></div>\",\"PeriodicalId\":554,\"journal\":{\"name\":\"Experiments in Fluids\",\"volume\":\"66 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experiments in Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00348-024-03948-0\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experiments in Fluids","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00348-024-03948-0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

聚合物添加剂对湍流流动的影响引起了人们的广泛关注,因为聚合物在有壁流动中具有显著的减阻作用。本文采用层析粒子成像测速技术(Tomo-PIV)对远离边界(大块湍流)的湍流von Kármán旋涡(VKS)流动系统中心的聚合物-湍流相互作用进行了实验研究。我们使用水-甘油混合物来调节工作流体的粘度,这有利于我们解决耗散尺度,从而直接获得速度梯度张量的所有九个分量。实验表明,在VKS流动中心,各向异性从大尺度扩展到小尺度,但随着雷诺数的增加逐渐减弱。在聚合物湍流中,随着聚合物浓度的增加,空间平均均方根速度和平均能量耗散率都先减小,当浓度超过某一临界值时,空间平均均方根速度和平均能量耗散率趋于稳定,表明聚合物的作用在高浓度时达到饱和状态。我们还发现,随着浓度的增加,小尺度的各向异性变得更加明显。然而,小尺度的轴对称始终保持不变,可用于估算平面PIV数据的平均能量耗散率。此外,我们发现,管状结构(牛顿湍流中的基本结构)的数量受到聚合物添加剂的强烈抑制,而管状结构的尺寸则大大扩大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Tomo-PIV measurement of small-scale structures in Newtonian and polymeric turbulence

Tomo-PIV measurement of small-scale structures in Newtonian and polymeric turbulence

The effects of polymer additives on turbulent fluid flows have attracted massive attention since the discovery of significant drag reduction by polymers in wall-bounded flows. Here we present an experimental study on the polymer–turbulence interaction at the center of the turbulent von Kármán swirling (VKS) flow system where the flow is far away from the boundary (bulk turbulence) with tomographic particle image velocimetry (Tomo-PIV). We used water–glycerol mixture to tune the viscosity of the working fluids, which facilitates us to resolve the dissipative scales and thus obtain all the nine components of the velocity gradient tensor directly. Our experiments demonstrate that at the center of the VKS flow, anisotropic properties extend from large scale to small scale, but gradually weaken with increasing Reynolds number. In polymeric turbulence, it is found that with increasing polymer concentration both the spatial averaged root mean square velocity and the average energy dissipation rate first decrease and then tend to stay at a constant value when concentration exceeds a critical value, implying that the effect of polymers saturates at high polymer concentration. We also find that the small scales become more anisotropic with the increasing concentration. The axisymmetry of small scales, however, is always retained, which can be employed to estimate the average energy dissipation rate from the planar PIV data. Moreover, we reveal that the number of the tube-like structures, the elementary structure in Newtonian turbulence, is strongly inhibited by the polymer additives, whereas the size of the tube-like structures is greatly enlarged.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Experiments in Fluids
Experiments in Fluids 工程技术-工程:机械
CiteScore
5.10
自引率
12.50%
发文量
157
审稿时长
3.8 months
期刊介绍: Experiments in Fluids examines the advancement, extension, and improvement of new techniques of flow measurement. The journal also publishes contributions that employ existing experimental techniques to gain an understanding of the underlying flow physics in the areas of turbulence, aerodynamics, hydrodynamics, convective heat transfer, combustion, turbomachinery, multi-phase flows, and chemical, biological and geological flows. In addition, readers will find papers that report on investigations combining experimental and analytical/numerical approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信