固态氩的状态方程,适用于温度高达760 K,压力高达6300 MPa

IF 2.5 4区 工程技术 Q3 CHEMISTRY, PHYSICAL
Xiong Xiao, Sakimsan Sriskandaruban, Helen E. Maynard-Casely, Monika Thol, Peter Falloon, Roland Span, Eric F. May
{"title":"固态氩的状态方程,适用于温度高达760 K,压力高达6300 MPa","authors":"Xiong Xiao,&nbsp;Sakimsan Sriskandaruban,&nbsp;Helen E. Maynard-Casely,&nbsp;Monika Thol,&nbsp;Peter Falloon,&nbsp;Roland Span,&nbsp;Eric F. May","doi":"10.1007/s10765-024-03469-2","DOIUrl":null,"url":null,"abstract":"<div><p>Thermodynamic property data for solid argon have been analysed to construct a new fundamental equation of state (EOS) based on the Helmholtz energy. This approach is based on methodologies previously applied to solid CO<sub>2</sub> and benzene (Trusler in J Phys Chem Ref Data 40:043105, 2011; Xiao et al. in J Phys Chem Ref Data 50:043104, 2021). The EOS is capable of predicting thermodynamic properties of solid argon up to 760 K and 6300 MPa, using temperature and cell volume as independent variables. The model incorporates the quasi-harmonic approximation with a Debye oscillator framework for vibrons, along with an anharmonic term to address deviations near the triple point. In addition to literature data, the model was regressed to new measurements of argon’s solid cell volume conducted from (8 to 50) K using a high-intensity neutron diffractometer, the results of which are reported here. This new EOS achieves a high degree of accuracy in representing experimental data, with uncertainties (<i>k</i> = 1) estimated of 0.1 %, 0.5 %, and 0.5 % for the cell volume along the sublimation curve, along the melting curve, and in the compressed solid phase, respectively; 2 % to 10 % for the heat capacity along the sublimation curve in different temperature regions; 1 % to 10 % for the thermal expansivity on the sublimation curve; 2 % for the isothermal bulk modulus, 1 % for the isentropic bulk modulus, 0.2 % for the enthalpy of sublimation, 0.5 % to 2 % for the enthalpy of melting, 1 % for the sublimation pressure (<i>T</i> &gt; 50 K), and 2 % to 5 % for melting pressure. The EOS maintains physically realistic behaviour across the range of conditions from absolute zero to high-pressure.</p></div>","PeriodicalId":598,"journal":{"name":"International Journal of Thermophysics","volume":"46 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Equation of State for Solid Argon Valid for Temperatures up to 760 K and Pressures up to 6300 MPa\",\"authors\":\"Xiong Xiao,&nbsp;Sakimsan Sriskandaruban,&nbsp;Helen E. Maynard-Casely,&nbsp;Monika Thol,&nbsp;Peter Falloon,&nbsp;Roland Span,&nbsp;Eric F. May\",\"doi\":\"10.1007/s10765-024-03469-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Thermodynamic property data for solid argon have been analysed to construct a new fundamental equation of state (EOS) based on the Helmholtz energy. This approach is based on methodologies previously applied to solid CO<sub>2</sub> and benzene (Trusler in J Phys Chem Ref Data 40:043105, 2011; Xiao et al. in J Phys Chem Ref Data 50:043104, 2021). The EOS is capable of predicting thermodynamic properties of solid argon up to 760 K and 6300 MPa, using temperature and cell volume as independent variables. The model incorporates the quasi-harmonic approximation with a Debye oscillator framework for vibrons, along with an anharmonic term to address deviations near the triple point. In addition to literature data, the model was regressed to new measurements of argon’s solid cell volume conducted from (8 to 50) K using a high-intensity neutron diffractometer, the results of which are reported here. This new EOS achieves a high degree of accuracy in representing experimental data, with uncertainties (<i>k</i> = 1) estimated of 0.1 %, 0.5 %, and 0.5 % for the cell volume along the sublimation curve, along the melting curve, and in the compressed solid phase, respectively; 2 % to 10 % for the heat capacity along the sublimation curve in different temperature regions; 1 % to 10 % for the thermal expansivity on the sublimation curve; 2 % for the isothermal bulk modulus, 1 % for the isentropic bulk modulus, 0.2 % for the enthalpy of sublimation, 0.5 % to 2 % for the enthalpy of melting, 1 % for the sublimation pressure (<i>T</i> &gt; 50 K), and 2 % to 5 % for melting pressure. The EOS maintains physically realistic behaviour across the range of conditions from absolute zero to high-pressure.</p></div>\",\"PeriodicalId\":598,\"journal\":{\"name\":\"International Journal of Thermophysics\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Thermophysics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10765-024-03469-2\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermophysics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10765-024-03469-2","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

分析了固体氩气的热力学性质,建立了基于亥姆霍兹能的基本态方程。该方法基于先前应用于固体二氧化碳和苯的方法(Trusler in J Phys Chem Ref Data 40:043105, 2011;Xiao et al. [J] .物理化学学报(英文版)。EOS能够预测高达760 K和6300 MPa的固体氩气的热力学性质,使用温度和电池体积作为独立变量。该模型结合了准谐波近似和振动的德拜振子框架,以及一个非谐波项来解决三相点附近的偏差。除了文献数据外,该模型还回归到使用高强度中子衍射仪在(8 ~ 50)K范围内进行的氩气固体电池体积的新测量,其结果在这里报告。这种新的EOS在表示实验数据方面达到了很高的精度,在升华曲线、熔化曲线和压缩固相中,细胞体积的不确定性(k = 1)估计分别为0.1%、0.5%和0.5%;在不同温度区域,热容沿升华曲线变化2% ~ 10%;升华曲线上的热膨胀率为1% ~ 10%;等温体积模量为2%,等熵体积模量为1%,升华焓为0.2%,熔化焓为0.5%至2%,升华压力(T > 50 K)为1%,熔化压力为2%至5%。EOS在从绝对零度到高压的各种条件下都能保持物理逼真的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Equation of State for Solid Argon Valid for Temperatures up to 760 K and Pressures up to 6300 MPa

Equation of State for Solid Argon Valid for Temperatures up to 760 K and Pressures up to 6300 MPa

Thermodynamic property data for solid argon have been analysed to construct a new fundamental equation of state (EOS) based on the Helmholtz energy. This approach is based on methodologies previously applied to solid CO2 and benzene (Trusler in J Phys Chem Ref Data 40:043105, 2011; Xiao et al. in J Phys Chem Ref Data 50:043104, 2021). The EOS is capable of predicting thermodynamic properties of solid argon up to 760 K and 6300 MPa, using temperature and cell volume as independent variables. The model incorporates the quasi-harmonic approximation with a Debye oscillator framework for vibrons, along with an anharmonic term to address deviations near the triple point. In addition to literature data, the model was regressed to new measurements of argon’s solid cell volume conducted from (8 to 50) K using a high-intensity neutron diffractometer, the results of which are reported here. This new EOS achieves a high degree of accuracy in representing experimental data, with uncertainties (k = 1) estimated of 0.1 %, 0.5 %, and 0.5 % for the cell volume along the sublimation curve, along the melting curve, and in the compressed solid phase, respectively; 2 % to 10 % for the heat capacity along the sublimation curve in different temperature regions; 1 % to 10 % for the thermal expansivity on the sublimation curve; 2 % for the isothermal bulk modulus, 1 % for the isentropic bulk modulus, 0.2 % for the enthalpy of sublimation, 0.5 % to 2 % for the enthalpy of melting, 1 % for the sublimation pressure (T > 50 K), and 2 % to 5 % for melting pressure. The EOS maintains physically realistic behaviour across the range of conditions from absolute zero to high-pressure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
9.10%
发文量
179
审稿时长
5 months
期刊介绍: International Journal of Thermophysics serves as an international medium for the publication of papers in thermophysics, assisting both generators and users of thermophysical properties data. This distinguished journal publishes both experimental and theoretical papers on thermophysical properties of matter in the liquid, gaseous, and solid states (including soft matter, biofluids, and nano- and bio-materials), on instrumentation and techniques leading to their measurement, and on computer studies of model and related systems. Studies in all ranges of temperature, pressure, wavelength, and other relevant variables are included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信