{"title":"卤素工程调谐碘化铅杂化钙钛矿半导体的带隙和结构相变","authors":"Hui-Yi Hu, Ya-Xin Xu, Shu-Ting Yuan, Jing-Yang Ma, Guang Xia, Shu-Ting Shi, Zi-Xiong Zhou, Jin-Bin Yuan and Li-De Yu","doi":"10.1039/D4NJ04595E","DOIUrl":null,"url":null,"abstract":"<p >Organic–inorganic hybrid materials possess unique advantages, including structural adjustability and tunable functional properties, making them promising candidates for applications in sensors, intelligent switches, and optoelectronic devices. In this study, we investigate the impact of halogen tuning on the macroscopic properties of three 1D (one-dimensional) perovskite semiconductor hybrids: [RCM3HQ]<small><sub>2</sub></small>PbI<small><sub>4</sub></small> (<strong>1</strong>), [RBM3HQ]<small><sub>2</sub></small>PbI<small><sub>4</sub></small> (<strong>2</strong>), and [RIM3HQ]<small><sub>2</sub></small>PbI<small><sub>4</sub></small> (<strong>3</strong>) (where RCM3HQ = R-<em>N</em>-chloromethyl-3-hydroxylquinuclidinium, RBM3HQ = R-<em>N</em>-bromomethyl-3-hydroxylquinuclidinium, and RIM3HQ = R-<em>N</em>-iodomethyl-3-hydroxylquinuclidinium). As anticipated, halogen tuning facilitates the regulation of structural phase transitions, with hybrid <strong>1</strong> exhibiting a phase transition accompanied by a dielectric switch. Notably, halogen engineering alters the band gap significantly, decreasing it from 2.75 eV (<strong>1</strong>) to 2.35 eV (<strong>3</strong>). Furthermore, all compounds <strong>1–3</strong> demonstrate a response to X-ray radiation detection and exhibit good photocurrent stability. Our findings present an effective molecular design strategy for optimizing the properties and exploring high-performance multifunctional semiconductor materials.</p>","PeriodicalId":95,"journal":{"name":"New Journal of Chemistry","volume":" 2","pages":" 600-604"},"PeriodicalIF":2.7000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Halogen engineering tuned band gap and structural phase transition in lead iodide hybrid perovskite semiconductors†\",\"authors\":\"Hui-Yi Hu, Ya-Xin Xu, Shu-Ting Yuan, Jing-Yang Ma, Guang Xia, Shu-Ting Shi, Zi-Xiong Zhou, Jin-Bin Yuan and Li-De Yu\",\"doi\":\"10.1039/D4NJ04595E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Organic–inorganic hybrid materials possess unique advantages, including structural adjustability and tunable functional properties, making them promising candidates for applications in sensors, intelligent switches, and optoelectronic devices. In this study, we investigate the impact of halogen tuning on the macroscopic properties of three 1D (one-dimensional) perovskite semiconductor hybrids: [RCM3HQ]<small><sub>2</sub></small>PbI<small><sub>4</sub></small> (<strong>1</strong>), [RBM3HQ]<small><sub>2</sub></small>PbI<small><sub>4</sub></small> (<strong>2</strong>), and [RIM3HQ]<small><sub>2</sub></small>PbI<small><sub>4</sub></small> (<strong>3</strong>) (where RCM3HQ = R-<em>N</em>-chloromethyl-3-hydroxylquinuclidinium, RBM3HQ = R-<em>N</em>-bromomethyl-3-hydroxylquinuclidinium, and RIM3HQ = R-<em>N</em>-iodomethyl-3-hydroxylquinuclidinium). As anticipated, halogen tuning facilitates the regulation of structural phase transitions, with hybrid <strong>1</strong> exhibiting a phase transition accompanied by a dielectric switch. Notably, halogen engineering alters the band gap significantly, decreasing it from 2.75 eV (<strong>1</strong>) to 2.35 eV (<strong>3</strong>). Furthermore, all compounds <strong>1–3</strong> demonstrate a response to X-ray radiation detection and exhibit good photocurrent stability. Our findings present an effective molecular design strategy for optimizing the properties and exploring high-performance multifunctional semiconductor materials.</p>\",\"PeriodicalId\":95,\"journal\":{\"name\":\"New Journal of Chemistry\",\"volume\":\" 2\",\"pages\":\" 600-604\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Journal of Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/nj/d4nj04595e\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/nj/d4nj04595e","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
有机-无机杂化材料具有独特的优势,包括结构可调节性和可调的功能特性,使其成为传感器,智能开关和光电子器件应用的有希望的候选者。在本研究中,我们研究了卤素调谐对三种一维钙钛矿半导体杂化物[RCM3HQ]2PbI4(1)、[RBM3HQ]2PbI4(2)和[RIM3HQ]2PbI4(3)宏观性质的影响(其中RCM3HQ = r - n -氯甲基-3-羟基喹啉,RBM3HQ = r - n -溴甲基-3-羟基喹啉,RIM3HQ = r - n -碘甲基-3-羟基喹啉)。正如预期的那样,卤素调谐促进了结构相变的调节,混合材料1表现出伴随着介电开关的相变。值得注意的是,卤素工程显著改变了带隙,将其从2.75 eV(1)降低到2.35 eV(3)。此外,所有化合物1 - 3对x射线辐射检测都有响应,并表现出良好的光电流稳定性。我们的发现为优化性能和探索高性能多功能半导体材料提供了一种有效的分子设计策略。
Halogen engineering tuned band gap and structural phase transition in lead iodide hybrid perovskite semiconductors†
Organic–inorganic hybrid materials possess unique advantages, including structural adjustability and tunable functional properties, making them promising candidates for applications in sensors, intelligent switches, and optoelectronic devices. In this study, we investigate the impact of halogen tuning on the macroscopic properties of three 1D (one-dimensional) perovskite semiconductor hybrids: [RCM3HQ]2PbI4 (1), [RBM3HQ]2PbI4 (2), and [RIM3HQ]2PbI4 (3) (where RCM3HQ = R-N-chloromethyl-3-hydroxylquinuclidinium, RBM3HQ = R-N-bromomethyl-3-hydroxylquinuclidinium, and RIM3HQ = R-N-iodomethyl-3-hydroxylquinuclidinium). As anticipated, halogen tuning facilitates the regulation of structural phase transitions, with hybrid 1 exhibiting a phase transition accompanied by a dielectric switch. Notably, halogen engineering alters the band gap significantly, decreasing it from 2.75 eV (1) to 2.35 eV (3). Furthermore, all compounds 1–3 demonstrate a response to X-ray radiation detection and exhibit good photocurrent stability. Our findings present an effective molecular design strategy for optimizing the properties and exploring high-performance multifunctional semiconductor materials.