基于激光诱导击穿光谱的钕铁硼磁性精确定量方法

IF 3.1 2区 化学 Q2 CHEMISTRY, ANALYTICAL
Guanyu Chen, Jing Chen, Dongming Qu, Guang Yang and Huihui Sun
{"title":"基于激光诱导击穿光谱的钕铁硼磁性精确定量方法","authors":"Guanyu Chen, Jing Chen, Dongming Qu, Guang Yang and Huihui Sun","doi":"10.1039/D4JA00342J","DOIUrl":null,"url":null,"abstract":"<p >NdFeB magnetic materials are widely used in daily life, such as in permanent magnet motors, loudspeakers and computer disks. The NdFeB magnetic material has excellent magnetic properties, and its magnetic properties are also the key to judge the production quality of NdFeB. Therefore, the precise quantification of the magnetic properties of NdFeB magnetic materials is crucial. Laser induced breakdown spectroscopy (LIBS) is a technique to obtain the spectrum of chemical elements by excitation of plasma on the surface of a sample with a high energy laser. In this paper, a precise classification and magnetic quantification method for NdFeB magnetic materials based on laser-induced breakdown spectroscopy is designed, which is different from the traditional direct magnetic property detection method and uses element detection to quantitatively analyze the magnetic properties indirectly. A laser-induced breakdown spectroscopy system was used to collect the characteristic spectrum of NdFeB magnetic materials, and the sliding window minimum removal base method was independently designed to further optimize the detection accuracy. A classification model and quantitative analysis method model were further established and optimized. The random forest method was used to preliminarily classify NdFeB magnetic materials, and the GA-ELM method was used to conduct quantitative analysis of magnetic properties. Quantitative magnetic properties include Br, Hcj, Hcb and (BH)max. The error analysis of the final quantitative analysis is as follows: RMSE of Br reaches 0.0001526, RMSE of Hcj reaches 0.0001937, RMSE of Hcb reaches 0.00197, and RMSE of (BH)max reaches 0.00785. It is verified that the magnetic quantification method for NdFeB magnetic materials based on laser-induced breakdown spectroscopy can effectively conduct accurate quantitative analysis of the magnetic properties of NdFeB magnetic materials and provide a fast, convenient, accurate and economical detection method for the quality control of magnetic materials workshops.</p>","PeriodicalId":81,"journal":{"name":"Journal of Analytical Atomic Spectrometry","volume":" 1","pages":" 297-305"},"PeriodicalIF":3.1000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An accurate quantitative method for NdFeB magnetism based on laser-induced breakdown spectroscopy\",\"authors\":\"Guanyu Chen, Jing Chen, Dongming Qu, Guang Yang and Huihui Sun\",\"doi\":\"10.1039/D4JA00342J\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >NdFeB magnetic materials are widely used in daily life, such as in permanent magnet motors, loudspeakers and computer disks. The NdFeB magnetic material has excellent magnetic properties, and its magnetic properties are also the key to judge the production quality of NdFeB. Therefore, the precise quantification of the magnetic properties of NdFeB magnetic materials is crucial. Laser induced breakdown spectroscopy (LIBS) is a technique to obtain the spectrum of chemical elements by excitation of plasma on the surface of a sample with a high energy laser. In this paper, a precise classification and magnetic quantification method for NdFeB magnetic materials based on laser-induced breakdown spectroscopy is designed, which is different from the traditional direct magnetic property detection method and uses element detection to quantitatively analyze the magnetic properties indirectly. A laser-induced breakdown spectroscopy system was used to collect the characteristic spectrum of NdFeB magnetic materials, and the sliding window minimum removal base method was independently designed to further optimize the detection accuracy. A classification model and quantitative analysis method model were further established and optimized. The random forest method was used to preliminarily classify NdFeB magnetic materials, and the GA-ELM method was used to conduct quantitative analysis of magnetic properties. Quantitative magnetic properties include Br, Hcj, Hcb and (BH)max. The error analysis of the final quantitative analysis is as follows: RMSE of Br reaches 0.0001526, RMSE of Hcj reaches 0.0001937, RMSE of Hcb reaches 0.00197, and RMSE of (BH)max reaches 0.00785. It is verified that the magnetic quantification method for NdFeB magnetic materials based on laser-induced breakdown spectroscopy can effectively conduct accurate quantitative analysis of the magnetic properties of NdFeB magnetic materials and provide a fast, convenient, accurate and economical detection method for the quality control of magnetic materials workshops.</p>\",\"PeriodicalId\":81,\"journal\":{\"name\":\"Journal of Analytical Atomic Spectrometry\",\"volume\":\" 1\",\"pages\":\" 297-305\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Analytical Atomic Spectrometry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ja/d4ja00342j\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Analytical Atomic Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ja/d4ja00342j","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

钕铁硼磁性材料广泛应用于日常生活中,如永磁电机、扬声器、计算机磁盘等。钕铁硼磁性材料具有优异的磁性能,其磁性能也是判断钕铁硼生产质量的关键。因此,精确量化钕铁硼磁性材料的磁性是至关重要的。激光诱导击穿光谱(LIBS)是利用高能激光在样品表面激发等离子体来获得化学元素光谱的一种技术。本文设计了一种基于激光诱导击穿光谱的钕铁硼磁性材料精确分类和磁性定量方法,不同于传统的直接磁性检测方法,采用元素检测间接定量分析磁性。利用激光诱导击穿光谱系统采集钕铁硼磁性材料的特征光谱,独立设计滑动窗口最小去除基法,进一步优化检测精度。进一步建立并优化了分类模型和定量分析方法模型。采用随机森林法对钕铁硼磁性材料进行初步分类,采用GA-ELM法对磁性材料进行定量分析。定量磁性能包括Br、Hcj、Hcb和(BH)max。最终定量分析的误差分析如下:Br的RMSE达到0.0001526,Hcj的RMSE达到0.0001937,Hcb的RMSE达到0.00197,(BH)max的RMSE达到0.00785。验证了基于激光诱导击穿光谱的钕铁硼磁性材料磁性定量方法可以有效地对钕铁硼磁性材料的磁性进行准确的定量分析,为磁性材料车间的质量控制提供了一种快速、方便、准确、经济的检测方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

An accurate quantitative method for NdFeB magnetism based on laser-induced breakdown spectroscopy

An accurate quantitative method for NdFeB magnetism based on laser-induced breakdown spectroscopy

NdFeB magnetic materials are widely used in daily life, such as in permanent magnet motors, loudspeakers and computer disks. The NdFeB magnetic material has excellent magnetic properties, and its magnetic properties are also the key to judge the production quality of NdFeB. Therefore, the precise quantification of the magnetic properties of NdFeB magnetic materials is crucial. Laser induced breakdown spectroscopy (LIBS) is a technique to obtain the spectrum of chemical elements by excitation of plasma on the surface of a sample with a high energy laser. In this paper, a precise classification and magnetic quantification method for NdFeB magnetic materials based on laser-induced breakdown spectroscopy is designed, which is different from the traditional direct magnetic property detection method and uses element detection to quantitatively analyze the magnetic properties indirectly. A laser-induced breakdown spectroscopy system was used to collect the characteristic spectrum of NdFeB magnetic materials, and the sliding window minimum removal base method was independently designed to further optimize the detection accuracy. A classification model and quantitative analysis method model were further established and optimized. The random forest method was used to preliminarily classify NdFeB magnetic materials, and the GA-ELM method was used to conduct quantitative analysis of magnetic properties. Quantitative magnetic properties include Br, Hcj, Hcb and (BH)max. The error analysis of the final quantitative analysis is as follows: RMSE of Br reaches 0.0001526, RMSE of Hcj reaches 0.0001937, RMSE of Hcb reaches 0.00197, and RMSE of (BH)max reaches 0.00785. It is verified that the magnetic quantification method for NdFeB magnetic materials based on laser-induced breakdown spectroscopy can effectively conduct accurate quantitative analysis of the magnetic properties of NdFeB magnetic materials and provide a fast, convenient, accurate and economical detection method for the quality control of magnetic materials workshops.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
26.50%
发文量
228
审稿时长
1.7 months
期刊介绍: Innovative research on the fundamental theory and application of spectrometric techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信