Landau-Lifshitz-Gilbert方程的旋量几何表达式

IF 2.1 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Kristjan Ottar Klausen;Snorri Ingvarsson
{"title":"Landau-Lifshitz-Gilbert方程的旋量几何表达式","authors":"Kristjan Ottar Klausen;Snorri Ingvarsson","doi":"10.1109/TMAG.2024.3509214","DOIUrl":null,"url":null,"abstract":"The Landau–Lifshitz–Gilbert (LLG) equation for magnetization dynamics is recast into spinor form using the real-valued Clifford algebra (geometric algebra) of three-space. We show how the undamped case can be explicitly solved to obtain componentwise solutions, with clear geometrical meaning. Generalizations of the approach to include damping are formulated. The implications of the axial property of the magnetization vector are briefly discussed.","PeriodicalId":13405,"journal":{"name":"IEEE Transactions on Magnetics","volume":"61 1","pages":"1-5"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spinor Formulation of the Landau–Lifshitz–Gilbert Equation With Geometric Algebra\",\"authors\":\"Kristjan Ottar Klausen;Snorri Ingvarsson\",\"doi\":\"10.1109/TMAG.2024.3509214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Landau–Lifshitz–Gilbert (LLG) equation for magnetization dynamics is recast into spinor form using the real-valued Clifford algebra (geometric algebra) of three-space. We show how the undamped case can be explicitly solved to obtain componentwise solutions, with clear geometrical meaning. Generalizations of the approach to include damping are formulated. The implications of the axial property of the magnetization vector are briefly discussed.\",\"PeriodicalId\":13405,\"journal\":{\"name\":\"IEEE Transactions on Magnetics\",\"volume\":\"61 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Magnetics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10771792/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Magnetics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10771792/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

利用三维空间的实数Clifford代数(几何代数)将磁化动力学的Landau-Lifshitz-Gilbert (LLG)方程转化为旋量形式。我们展示了如何明确地解决无阻尼情况,以获得具有明确几何意义的组件解决方案。对包括阻尼在内的方法进行了推广。简要讨论了磁化矢量轴向特性的含义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spinor Formulation of the Landau–Lifshitz–Gilbert Equation With Geometric Algebra
The Landau–Lifshitz–Gilbert (LLG) equation for magnetization dynamics is recast into spinor form using the real-valued Clifford algebra (geometric algebra) of three-space. We show how the undamped case can be explicitly solved to obtain componentwise solutions, with clear geometrical meaning. Generalizations of the approach to include damping are formulated. The implications of the axial property of the magnetization vector are briefly discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Magnetics
IEEE Transactions on Magnetics 工程技术-工程:电子与电气
CiteScore
4.00
自引率
14.30%
发文量
565
审稿时长
4.1 months
期刊介绍: Science and technology related to the basic physics and engineering of magnetism, magnetic materials, applied magnetics, magnetic devices, and magnetic data storage. The IEEE Transactions on Magnetics publishes scholarly articles of archival value as well as tutorial expositions and critical reviews of classical subjects and topics of current interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信