XGenRecon:几何控制x射线投影生成在超解析体积CBCT重建中的新视角

IF 4.6 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Chulong Zhang;Yaoqin Xie;Xiaokun Liang
{"title":"XGenRecon:几何控制x射线投影生成在超解析体积CBCT重建中的新视角","authors":"Chulong Zhang;Yaoqin Xie;Xiaokun Liang","doi":"10.1109/TRPMS.2024.3420742","DOIUrl":null,"url":null,"abstract":"We propose a novel paradigm for cone-beam computed tomography (CBCT) reconstruction from ultrasparse X-ray projections, by introducing a framework that generates auxiliary X-ray projections under controlled geometric parameters. This innovation overcomes the limitations of conventional methods that are constrained to producing fixed-angle projections. Our approach is organized into three key modules: 1) the XGen module; 2) X-Correction module; and 3) CT-Correction module. Through the XGen module, we generate projections based on any given geometric parameters to supplement the geometric information in the projection domain. The X-Correction module then introduces geometric corrections to harmonize the generated projections. Finally, through the CT-Correction module, the reconstructed image undergoes refining, thereby enhancing the image quality within the image domain. We have validated our model on several datasets, including a large-scale publicly available lung CT dataset (LIDC-IDRI with 1018 patients); an extensive abdominal CT dataset (AbdomenCT-1K, with a selected 1k patients); and our proprietary pelvic CT dataset, collated from a hospital (445 patients). Real walnut projection data were also incorporated for genuine projection validation. Compared to the traditional projection generation methods and the state-of-the-art ultrasparse reconstruction techniques on 2-view and 10-view tasks, our method has demonstrated consistently superior performance across various tasks.","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":"9 1","pages":"95-106"},"PeriodicalIF":4.6000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"XGenRecon: A New Perspective in Ultrasparse Volumetric CBCT Reconstruction Through Geometry-Controlled X-Ray Projection Generation\",\"authors\":\"Chulong Zhang;Yaoqin Xie;Xiaokun Liang\",\"doi\":\"10.1109/TRPMS.2024.3420742\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a novel paradigm for cone-beam computed tomography (CBCT) reconstruction from ultrasparse X-ray projections, by introducing a framework that generates auxiliary X-ray projections under controlled geometric parameters. This innovation overcomes the limitations of conventional methods that are constrained to producing fixed-angle projections. Our approach is organized into three key modules: 1) the XGen module; 2) X-Correction module; and 3) CT-Correction module. Through the XGen module, we generate projections based on any given geometric parameters to supplement the geometric information in the projection domain. The X-Correction module then introduces geometric corrections to harmonize the generated projections. Finally, through the CT-Correction module, the reconstructed image undergoes refining, thereby enhancing the image quality within the image domain. We have validated our model on several datasets, including a large-scale publicly available lung CT dataset (LIDC-IDRI with 1018 patients); an extensive abdominal CT dataset (AbdomenCT-1K, with a selected 1k patients); and our proprietary pelvic CT dataset, collated from a hospital (445 patients). Real walnut projection data were also incorporated for genuine projection validation. Compared to the traditional projection generation methods and the state-of-the-art ultrasparse reconstruction techniques on 2-view and 10-view tasks, our method has demonstrated consistently superior performance across various tasks.\",\"PeriodicalId\":46807,\"journal\":{\"name\":\"IEEE Transactions on Radiation and Plasma Medical Sciences\",\"volume\":\"9 1\",\"pages\":\"95-106\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Radiation and Plasma Medical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10577466/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Radiation and Plasma Medical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10577466/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种基于超解析x射线投影的锥形束计算机断层扫描(CBCT)重建的新范式,通过引入一个框架,该框架在受控的几何参数下生成辅助x射线投影。这种创新克服了传统方法只能产生固定角度投影的局限性。我们的方法分为三个关键模块:1)XGen模块;2) X-Correction模块;3) ct校正模块。通过XGen模块,我们可以根据任意给定的几何参数生成投影,以补充投影域中的几何信息。然后,X-Correction模块引入几何校正来协调生成的投影。最后,通过CT-Correction模块对重构图像进行细化,从而在图像域内增强图像质量。我们已经在几个数据集上验证了我们的模型,包括一个大规模的公开可用的肺部CT数据集(LIDC-IDRI, 1018名患者);广泛的腹部CT数据集(腹CT- 1k,选择了1k例患者);以及我们从一家医院(445名患者)整理的专有骨盆CT数据集。真实的核桃投影数据也被纳入真实的投影验证。与传统的投影生成方法和最先进的超解析重建技术相比,我们的方法在各种任务中表现出一贯的优越性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
XGenRecon: A New Perspective in Ultrasparse Volumetric CBCT Reconstruction Through Geometry-Controlled X-Ray Projection Generation
We propose a novel paradigm for cone-beam computed tomography (CBCT) reconstruction from ultrasparse X-ray projections, by introducing a framework that generates auxiliary X-ray projections under controlled geometric parameters. This innovation overcomes the limitations of conventional methods that are constrained to producing fixed-angle projections. Our approach is organized into three key modules: 1) the XGen module; 2) X-Correction module; and 3) CT-Correction module. Through the XGen module, we generate projections based on any given geometric parameters to supplement the geometric information in the projection domain. The X-Correction module then introduces geometric corrections to harmonize the generated projections. Finally, through the CT-Correction module, the reconstructed image undergoes refining, thereby enhancing the image quality within the image domain. We have validated our model on several datasets, including a large-scale publicly available lung CT dataset (LIDC-IDRI with 1018 patients); an extensive abdominal CT dataset (AbdomenCT-1K, with a selected 1k patients); and our proprietary pelvic CT dataset, collated from a hospital (445 patients). Real walnut projection data were also incorporated for genuine projection validation. Compared to the traditional projection generation methods and the state-of-the-art ultrasparse reconstruction techniques on 2-view and 10-view tasks, our method has demonstrated consistently superior performance across various tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Radiation and Plasma Medical Sciences
IEEE Transactions on Radiation and Plasma Medical Sciences RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
8.00
自引率
18.20%
发文量
109
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信