GARD:一种几何信息和不确定性感知的零射击路边单眼目标检测基线方法

IF 4.6 2区 计算机科学 Q2 ROBOTICS
Yuru Peng;Beibei Wang;Zijian Yu;Lu Zhang;Jianmin Ji;Yu Zhang;Yanyong Zhang
{"title":"GARD:一种几何信息和不确定性感知的零射击路边单眼目标检测基线方法","authors":"Yuru Peng;Beibei Wang;Zijian Yu;Lu Zhang;Jianmin Ji;Yu Zhang;Yanyong Zhang","doi":"10.1109/LRA.2024.3520923","DOIUrl":null,"url":null,"abstract":"Roadside camera-based perception methods are in high demand for developing efficient vehicle-infrastructure collaborative perception systems. By focusing on object-level depth prediction, we explore the potential benefits of integrating environmental priors into such systems and propose a geometry-based roadside per-object depth estimation algorithm dubbed GARD. The proposed method capitalizes on the inherent geometric properties of the pinhole camera model to derive depth as well as 3D positions for given 2D targets in roadside-view images, alleviating the need for computationally intensive end-to-end learning architectures for monocular 3D detection. Using only a pre-trained 2D detection model, our approach does not require vast amounts of scene-specific training data and shows superior generalization abilities across varying environments and camera setups, making it a practical and cost-effective solution for monocular 3D object detection.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 2","pages":"1297-1304"},"PeriodicalIF":4.6000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GARD: A Geometry-Informed and Uncertainty-Aware Baseline Method for Zero-Shot Roadside Monocular Object Detection\",\"authors\":\"Yuru Peng;Beibei Wang;Zijian Yu;Lu Zhang;Jianmin Ji;Yu Zhang;Yanyong Zhang\",\"doi\":\"10.1109/LRA.2024.3520923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Roadside camera-based perception methods are in high demand for developing efficient vehicle-infrastructure collaborative perception systems. By focusing on object-level depth prediction, we explore the potential benefits of integrating environmental priors into such systems and propose a geometry-based roadside per-object depth estimation algorithm dubbed GARD. The proposed method capitalizes on the inherent geometric properties of the pinhole camera model to derive depth as well as 3D positions for given 2D targets in roadside-view images, alleviating the need for computationally intensive end-to-end learning architectures for monocular 3D detection. Using only a pre-trained 2D detection model, our approach does not require vast amounts of scene-specific training data and shows superior generalization abilities across varying environments and camera setups, making it a practical and cost-effective solution for monocular 3D object detection.\",\"PeriodicalId\":13241,\"journal\":{\"name\":\"IEEE Robotics and Automation Letters\",\"volume\":\"10 2\",\"pages\":\"1297-1304\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Robotics and Automation Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10812033/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10812033/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

基于路边摄像头的感知方法对于开发高效的车辆-基础设施协同感知系统具有很高的需求。通过关注目标级深度预测,我们探索了将环境先验整合到此类系统中的潜在好处,并提出了一种基于几何的路边每目标深度估计算法GARD。该方法利用针孔相机模型固有的几何特性,从路边视图图像中获得给定2D目标的深度和3D位置,从而减轻了单眼3D检测对计算密集型端到端学习架构的需求。仅使用预训练的2D检测模型,我们的方法不需要大量特定场景的训练数据,并且在不同的环境和相机设置中显示出卓越的泛化能力,使其成为单目3D物体检测的实用且经济高效的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GARD: A Geometry-Informed and Uncertainty-Aware Baseline Method for Zero-Shot Roadside Monocular Object Detection
Roadside camera-based perception methods are in high demand for developing efficient vehicle-infrastructure collaborative perception systems. By focusing on object-level depth prediction, we explore the potential benefits of integrating environmental priors into such systems and propose a geometry-based roadside per-object depth estimation algorithm dubbed GARD. The proposed method capitalizes on the inherent geometric properties of the pinhole camera model to derive depth as well as 3D positions for given 2D targets in roadside-view images, alleviating the need for computationally intensive end-to-end learning architectures for monocular 3D detection. Using only a pre-trained 2D detection model, our approach does not require vast amounts of scene-specific training data and shows superior generalization abilities across varying environments and camera setups, making it a practical and cost-effective solution for monocular 3D object detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信