数据驱动的双线性HVAC动态预测控制——一个实验案例研究

IF 2.4 Q2 AUTOMATION & CONTROL SYSTEMS
Deborah Bilgic;Alexander Harding;Timm Faulwasser
{"title":"数据驱动的双线性HVAC动态预测控制——一个实验案例研究","authors":"Deborah Bilgic;Alexander Harding;Timm Faulwasser","doi":"10.1109/LCSYS.2024.3519224","DOIUrl":null,"url":null,"abstract":"Buildings are responsible for around 40% of the global energy demand. In order to effectively reduce the high energy consumption of HVAC systems while maintaining comfortable indoor climate, tailored control schemes are promising. Since the derivation of physical models of individual HVAC systems is time consuming, data-driven methods are a promising alternative. This letter proposes a framework for data-driven predictive control of HVAC system with bilinear system dynamics, which compensates for prediction errors via constraint adaptation through a bias term. The proposed scheme combines an extension of Willems’ fundamental lemma to bilinear systems with the consideration of multiple data-sets. To evaluate the efficacy of the data-driven control scheme, an experimental case study is performed under realistic conditions. In comparison with an existing simple control scheme, our results demonstrate energy efficient operation and successful compensation of prediction errors.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"8 ","pages":"3009-3014"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data-Driven Predictive Control of Bilinear HVAC Dynamics—An Experimental Case Study\",\"authors\":\"Deborah Bilgic;Alexander Harding;Timm Faulwasser\",\"doi\":\"10.1109/LCSYS.2024.3519224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Buildings are responsible for around 40% of the global energy demand. In order to effectively reduce the high energy consumption of HVAC systems while maintaining comfortable indoor climate, tailored control schemes are promising. Since the derivation of physical models of individual HVAC systems is time consuming, data-driven methods are a promising alternative. This letter proposes a framework for data-driven predictive control of HVAC system with bilinear system dynamics, which compensates for prediction errors via constraint adaptation through a bias term. The proposed scheme combines an extension of Willems’ fundamental lemma to bilinear systems with the consideration of multiple data-sets. To evaluate the efficacy of the data-driven control scheme, an experimental case study is performed under realistic conditions. In comparison with an existing simple control scheme, our results demonstrate energy efficient operation and successful compensation of prediction errors.\",\"PeriodicalId\":37235,\"journal\":{\"name\":\"IEEE Control Systems Letters\",\"volume\":\"8 \",\"pages\":\"3009-3014\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Control Systems Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10804655/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10804655/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

建筑占全球能源需求的40%左右。为了有效降低暖通空调系统的高能耗,同时保持舒适的室内气候,量身定制的控制方案是有前途的。由于单个暖通空调系统的物理模型的推导是耗时的,数据驱动的方法是一个有前途的替代方案。本文提出了一个双线性系统动力学的数据驱动预测控制框架,该框架通过一个偏置项通过约束自适应来补偿预测误差。该方案将Willems的基本引理扩展到双线性系统,并考虑了多数据集。为了评估数据驱动控制方案的有效性,在现实条件下进行了实验案例研究。与现有的简单控制方案相比,我们的结果证明了节能的运行和预测误差的成功补偿。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data-Driven Predictive Control of Bilinear HVAC Dynamics—An Experimental Case Study
Buildings are responsible for around 40% of the global energy demand. In order to effectively reduce the high energy consumption of HVAC systems while maintaining comfortable indoor climate, tailored control schemes are promising. Since the derivation of physical models of individual HVAC systems is time consuming, data-driven methods are a promising alternative. This letter proposes a framework for data-driven predictive control of HVAC system with bilinear system dynamics, which compensates for prediction errors via constraint adaptation through a bias term. The proposed scheme combines an extension of Willems’ fundamental lemma to bilinear systems with the consideration of multiple data-sets. To evaluate the efficacy of the data-driven control scheme, an experimental case study is performed under realistic conditions. In comparison with an existing simple control scheme, our results demonstrate energy efficient operation and successful compensation of prediction errors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信