Sharu Bhagavathi Kandy , Sebastian Remke , Thiyagarajan Ranganathan , Shubham Kiran Wani , Xiaodi Dai , Narayanan Neithalath , Aditya Kumar , Mathieu Bauchy , Edward Garboczi , Torben Gädt , Samanvaya Srivastava , Gaurav Sant
{"title":"用于 3D 打印的热粘弹性超快加硬悬浮配方的设计和功能","authors":"Sharu Bhagavathi Kandy , Sebastian Remke , Thiyagarajan Ranganathan , Shubham Kiran Wani , Xiaodi Dai , Narayanan Neithalath , Aditya Kumar , Mathieu Bauchy , Edward Garboczi , Torben Gädt , Samanvaya Srivastava , Gaurav Sant","doi":"10.1016/j.cemconcomp.2024.105905","DOIUrl":null,"url":null,"abstract":"<div><div>An inability to accurately control the rate and extent of solidification of cementitious suspensions is a major impediment to creating geometrically complex structural shapes via 3D printing. In this work, we have developed a thermoresponsive rapid stiffening system that will stiffen suspensions of minerals such as quartz, limestone, portlandite, and Ordinary Portland Cement (OPC) over a wide pH range. When exposed to trigger temperatures between 40 °C and 70 °C, the polymer binder system undergoes a thermally triggered free radical polymerization (FRP) reaction, leading to an ultrafast stiffening of the suspension at an average rate on the order of 1 kPa/s and achieving MPa-level strength in less than a minute. The cured composites exhibit flexural strength and strain capacity far greater than OPC-based composites (<span><math><mrow><msub><mi>σ</mi><mi>f</mi></msub></mrow></math></span> <span><math><mrow><mo>∼</mo></mrow></math></span> 25 MPa, <span><math><mrow><msub><mi>γ</mi><mi>f</mi></msub></mrow></math></span> <span><math><mrow><mo>></mo></mrow></math></span> 1 %). We successfully demonstrated 3D printing using these engineered slurries, showcasing their thermal response, thermal latency, and printability, thereby validating our design approach and its potential for diverse applications. These thermoresponsive slurries facilitate freestyle printing, non-horizontal printing, and the creation of complex geometries with high overhangs. This approach provides a means to surmount the significant limitations of extrusion-based 3D printing using particulate suspensions and open up new possibilities in integrating design and production.</div></div>","PeriodicalId":9865,"journal":{"name":"Cement & concrete composites","volume":"157 ","pages":"Article 105905"},"PeriodicalIF":10.8000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and function of thermoresponsive-ultrafast stiffening suspension formulations for 3D printing\",\"authors\":\"Sharu Bhagavathi Kandy , Sebastian Remke , Thiyagarajan Ranganathan , Shubham Kiran Wani , Xiaodi Dai , Narayanan Neithalath , Aditya Kumar , Mathieu Bauchy , Edward Garboczi , Torben Gädt , Samanvaya Srivastava , Gaurav Sant\",\"doi\":\"10.1016/j.cemconcomp.2024.105905\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>An inability to accurately control the rate and extent of solidification of cementitious suspensions is a major impediment to creating geometrically complex structural shapes via 3D printing. In this work, we have developed a thermoresponsive rapid stiffening system that will stiffen suspensions of minerals such as quartz, limestone, portlandite, and Ordinary Portland Cement (OPC) over a wide pH range. When exposed to trigger temperatures between 40 °C and 70 °C, the polymer binder system undergoes a thermally triggered free radical polymerization (FRP) reaction, leading to an ultrafast stiffening of the suspension at an average rate on the order of 1 kPa/s and achieving MPa-level strength in less than a minute. The cured composites exhibit flexural strength and strain capacity far greater than OPC-based composites (<span><math><mrow><msub><mi>σ</mi><mi>f</mi></msub></mrow></math></span> <span><math><mrow><mo>∼</mo></mrow></math></span> 25 MPa, <span><math><mrow><msub><mi>γ</mi><mi>f</mi></msub></mrow></math></span> <span><math><mrow><mo>></mo></mrow></math></span> 1 %). We successfully demonstrated 3D printing using these engineered slurries, showcasing their thermal response, thermal latency, and printability, thereby validating our design approach and its potential for diverse applications. These thermoresponsive slurries facilitate freestyle printing, non-horizontal printing, and the creation of complex geometries with high overhangs. This approach provides a means to surmount the significant limitations of extrusion-based 3D printing using particulate suspensions and open up new possibilities in integrating design and production.</div></div>\",\"PeriodicalId\":9865,\"journal\":{\"name\":\"Cement & concrete composites\",\"volume\":\"157 \",\"pages\":\"Article 105905\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2025-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cement & concrete composites\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0958946524004785\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement & concrete composites","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0958946524004785","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Design and function of thermoresponsive-ultrafast stiffening suspension formulations for 3D printing
An inability to accurately control the rate and extent of solidification of cementitious suspensions is a major impediment to creating geometrically complex structural shapes via 3D printing. In this work, we have developed a thermoresponsive rapid stiffening system that will stiffen suspensions of minerals such as quartz, limestone, portlandite, and Ordinary Portland Cement (OPC) over a wide pH range. When exposed to trigger temperatures between 40 °C and 70 °C, the polymer binder system undergoes a thermally triggered free radical polymerization (FRP) reaction, leading to an ultrafast stiffening of the suspension at an average rate on the order of 1 kPa/s and achieving MPa-level strength in less than a minute. The cured composites exhibit flexural strength and strain capacity far greater than OPC-based composites ( 25 MPa, 1 %). We successfully demonstrated 3D printing using these engineered slurries, showcasing their thermal response, thermal latency, and printability, thereby validating our design approach and its potential for diverse applications. These thermoresponsive slurries facilitate freestyle printing, non-horizontal printing, and the creation of complex geometries with high overhangs. This approach provides a means to surmount the significant limitations of extrusion-based 3D printing using particulate suspensions and open up new possibilities in integrating design and production.
期刊介绍:
Cement & concrete composites focuses on advancements in cement-concrete composite technology and the production, use, and performance of cement-based construction materials. It covers a wide range of materials, including fiber-reinforced composites, polymer composites, ferrocement, and those incorporating special aggregates or waste materials. Major themes include microstructure, material properties, testing, durability, mechanics, modeling, design, fabrication, and practical applications. The journal welcomes papers on structural behavior, field studies, repair and maintenance, serviceability, and sustainability. It aims to enhance understanding, provide a platform for unconventional materials, promote low-cost energy-saving materials, and bridge the gap between materials science, engineering, and construction. Special issues on emerging topics are also published to encourage collaboration between materials scientists, engineers, designers, and fabricators.