三(2-氯乙基)磷酸通过激活髓质和髓外红细胞生成导致小鼠循环红细胞不平衡

IF 11.3 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Jingxu Zhang, Jing Liu, Jian Ding, Hongyan Yu, Ziyuan Li, Yidi Chen, Yongfeng Lin, Yong Niu, Lin Lu, Xiaoting Jin, Yuxin Zheng
{"title":"三(2-氯乙基)磷酸通过激活髓质和髓外红细胞生成导致小鼠循环红细胞不平衡","authors":"Jingxu Zhang, Jing Liu, Jian Ding, Hongyan Yu, Ziyuan Li, Yidi Chen, Yongfeng Lin, Yong Niu, Lin Lu, Xiaoting Jin, Yuxin Zheng","doi":"10.1021/acs.est.4c09436","DOIUrl":null,"url":null,"abstract":"Tris(2-chloroethyl) phosphate (TCEP), a prevalent organophosphorus flame retardant, has been identified in various environmental matrices and human blood samples, provoking alarm regarding its hematological toxicity, a subject that has not been thoroughly investigated. Red blood cells (RBCs), or erythrocytes, are the predominant cell type in peripheral blood and are crucial for the maintenance of physiological health. This investigation employed oral gavage to examine the effects of TCEP exposure on erythrocyte counts in mice and to clarify the underlying mechanisms. The results demonstrated a marked increase in circulating RBC counts post-TCEP exposure, concomitantly heightening the risk of polycythemia vera (PV). TCEP exposure stimulated erythropoiesis across all stages of medullary development, including the differentiation of hematopoietic stem cells into erythroid progenitors, the progression of erythrocyte development, and the maturation of erythrocyte. Moreover, TCEP potentiated extramedullary erythropoiesis in the spleen and liver. Subsequent bioinformatics analysis implied that TCEP-induced erythropoiesis was attributed to p53 downregulation. Thus, these findings indicate that TCEP disrupts erythrocyte-mediated hematological homeostasis through the enhancement of both medullary and extramedullary erythropoiesis, leading to the alteration of hematological equilibrium.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"4 1","pages":""},"PeriodicalIF":11.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tris(2-chloroethyl) Phosphate Leads to Unbalanced Circulating Erythrocyte in Mice by Activating both Medullary and Extramedullary Erythropoiesis\",\"authors\":\"Jingxu Zhang, Jing Liu, Jian Ding, Hongyan Yu, Ziyuan Li, Yidi Chen, Yongfeng Lin, Yong Niu, Lin Lu, Xiaoting Jin, Yuxin Zheng\",\"doi\":\"10.1021/acs.est.4c09436\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tris(2-chloroethyl) phosphate (TCEP), a prevalent organophosphorus flame retardant, has been identified in various environmental matrices and human blood samples, provoking alarm regarding its hematological toxicity, a subject that has not been thoroughly investigated. Red blood cells (RBCs), or erythrocytes, are the predominant cell type in peripheral blood and are crucial for the maintenance of physiological health. This investigation employed oral gavage to examine the effects of TCEP exposure on erythrocyte counts in mice and to clarify the underlying mechanisms. The results demonstrated a marked increase in circulating RBC counts post-TCEP exposure, concomitantly heightening the risk of polycythemia vera (PV). TCEP exposure stimulated erythropoiesis across all stages of medullary development, including the differentiation of hematopoietic stem cells into erythroid progenitors, the progression of erythrocyte development, and the maturation of erythrocyte. Moreover, TCEP potentiated extramedullary erythropoiesis in the spleen and liver. Subsequent bioinformatics analysis implied that TCEP-induced erythropoiesis was attributed to p53 downregulation. Thus, these findings indicate that TCEP disrupts erythrocyte-mediated hematological homeostasis through the enhancement of both medullary and extramedullary erythropoiesis, leading to the alteration of hematological equilibrium.\",\"PeriodicalId\":36,\"journal\":{\"name\":\"环境科学与技术\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"环境科学与技术\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.est.4c09436\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c09436","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

三(2-氯乙基)磷酸(TCEP)是一种普遍存在的有机磷阻燃剂,已在各种环境基质和人体血液样本中被发现,引起了人们对其血液毒性的警惕,这一主题尚未得到彻底的研究。红细胞(rbc)或红细胞是外周血中主要的细胞类型,对维持生理健康至关重要。本研究采用口服灌胃的方法来研究TCEP暴露对小鼠红细胞计数的影响,并阐明其潜在机制。结果显示,tcep暴露后循环红细胞计数显著增加,同时增加真性红细胞增多症(PV)的风险。TCEP暴露刺激了髓质发育的所有阶段的红细胞生成,包括造血干细胞向红祖细胞的分化、红细胞发育的进展和红细胞的成熟。此外,TCEP增强了脾和肝的髓外红细胞生成。随后的生物信息学分析表明,tcepa诱导的红细胞生成归因于p53下调。因此,这些发现表明,TCEP通过增强髓质和髓外红细胞生成,破坏红细胞介导的血液稳态,导致血液平衡的改变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Tris(2-chloroethyl) Phosphate Leads to Unbalanced Circulating Erythrocyte in Mice by Activating both Medullary and Extramedullary Erythropoiesis

Tris(2-chloroethyl) Phosphate Leads to Unbalanced Circulating Erythrocyte in Mice by Activating both Medullary and Extramedullary Erythropoiesis
Tris(2-chloroethyl) phosphate (TCEP), a prevalent organophosphorus flame retardant, has been identified in various environmental matrices and human blood samples, provoking alarm regarding its hematological toxicity, a subject that has not been thoroughly investigated. Red blood cells (RBCs), or erythrocytes, are the predominant cell type in peripheral blood and are crucial for the maintenance of physiological health. This investigation employed oral gavage to examine the effects of TCEP exposure on erythrocyte counts in mice and to clarify the underlying mechanisms. The results demonstrated a marked increase in circulating RBC counts post-TCEP exposure, concomitantly heightening the risk of polycythemia vera (PV). TCEP exposure stimulated erythropoiesis across all stages of medullary development, including the differentiation of hematopoietic stem cells into erythroid progenitors, the progression of erythrocyte development, and the maturation of erythrocyte. Moreover, TCEP potentiated extramedullary erythropoiesis in the spleen and liver. Subsequent bioinformatics analysis implied that TCEP-induced erythropoiesis was attributed to p53 downregulation. Thus, these findings indicate that TCEP disrupts erythrocyte-mediated hematological homeostasis through the enhancement of both medullary and extramedullary erythropoiesis, leading to the alteration of hematological equilibrium.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信