Chan Wang, Yingyi Quan, Jiang Jiang, Han Yu, Jia Liu, Wei Tang, Xinyue Li, Shouju Wang, Da Huo, Guang-Liang Jiang, Yang Yang, Qingqing Ding
{"title":"蛋白质加冕诱导的癌症分期依赖的多水平细胞毒性:血管类器官的全人源化研究","authors":"Chan Wang, Yingyi Quan, Jiang Jiang, Han Yu, Jia Liu, Wei Tang, Xinyue Li, Shouju Wang, Da Huo, Guang-Liang Jiang, Yang Yang, Qingqing Ding","doi":"10.1021/acsnano.4c07783","DOIUrl":null,"url":null,"abstract":"The protein corona effect refers to the phenomenon wherein nanomaterials in the bloodstream are coated by serum proteins, yet how protein coronated nanomaterials interact with blood vessels and its toxicity implications remain poorly understood. In this study, we investigated protein corona-related vessel toxicity by using an all-humanized assay integrating blood vessel organoids and patient-derived serum. Initially, we screened various nanomaterials to discern how parameters including size, morphology, hydrophobicity, surface charge, and chirality-dependent protein corona difference influence their uptake by vessel organoids. For nanomaterials showing substantial differences in vessel uptake, their protein corona was analyzed by using label-free mass spectra. Our findings revealed the involvement of cancer staging-related cytoskeleton components in mediating preferential uptake by cells, including endothelial and mural cells. Additionally, a transcriptome study was conducted to elucidate the influence of nanomaterials. We confirmed that protein coronated nanomaterials provoke remodeling at both transcriptional and translational levels, impacting pathways such as PI3K-Akt/Hippo/Wnt, and membraneless organelle integrity, respectively. Our study further demonstrated that the remodeling potential of patient-derived protein coronated nanomaterials can be harnessed to synergize with antiangiogenesis therapeutics to improve the outcomes. We anticipate that this study will provide guidance for the safe use of nanomedicine in the future.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"14 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Protein Coronation-Induced Cancer Staging-Dependent Multilevel Cytotoxicity: An All-Humanized Study in Blood Vessel Organoids\",\"authors\":\"Chan Wang, Yingyi Quan, Jiang Jiang, Han Yu, Jia Liu, Wei Tang, Xinyue Li, Shouju Wang, Da Huo, Guang-Liang Jiang, Yang Yang, Qingqing Ding\",\"doi\":\"10.1021/acsnano.4c07783\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The protein corona effect refers to the phenomenon wherein nanomaterials in the bloodstream are coated by serum proteins, yet how protein coronated nanomaterials interact with blood vessels and its toxicity implications remain poorly understood. In this study, we investigated protein corona-related vessel toxicity by using an all-humanized assay integrating blood vessel organoids and patient-derived serum. Initially, we screened various nanomaterials to discern how parameters including size, morphology, hydrophobicity, surface charge, and chirality-dependent protein corona difference influence their uptake by vessel organoids. For nanomaterials showing substantial differences in vessel uptake, their protein corona was analyzed by using label-free mass spectra. Our findings revealed the involvement of cancer staging-related cytoskeleton components in mediating preferential uptake by cells, including endothelial and mural cells. Additionally, a transcriptome study was conducted to elucidate the influence of nanomaterials. We confirmed that protein coronated nanomaterials provoke remodeling at both transcriptional and translational levels, impacting pathways such as PI3K-Akt/Hippo/Wnt, and membraneless organelle integrity, respectively. Our study further demonstrated that the remodeling potential of patient-derived protein coronated nanomaterials can be harnessed to synergize with antiangiogenesis therapeutics to improve the outcomes. We anticipate that this study will provide guidance for the safe use of nanomedicine in the future.\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnano.4c07783\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c07783","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Protein Coronation-Induced Cancer Staging-Dependent Multilevel Cytotoxicity: An All-Humanized Study in Blood Vessel Organoids
The protein corona effect refers to the phenomenon wherein nanomaterials in the bloodstream are coated by serum proteins, yet how protein coronated nanomaterials interact with blood vessels and its toxicity implications remain poorly understood. In this study, we investigated protein corona-related vessel toxicity by using an all-humanized assay integrating blood vessel organoids and patient-derived serum. Initially, we screened various nanomaterials to discern how parameters including size, morphology, hydrophobicity, surface charge, and chirality-dependent protein corona difference influence their uptake by vessel organoids. For nanomaterials showing substantial differences in vessel uptake, their protein corona was analyzed by using label-free mass spectra. Our findings revealed the involvement of cancer staging-related cytoskeleton components in mediating preferential uptake by cells, including endothelial and mural cells. Additionally, a transcriptome study was conducted to elucidate the influence of nanomaterials. We confirmed that protein coronated nanomaterials provoke remodeling at both transcriptional and translational levels, impacting pathways such as PI3K-Akt/Hippo/Wnt, and membraneless organelle integrity, respectively. Our study further demonstrated that the remodeling potential of patient-derived protein coronated nanomaterials can be harnessed to synergize with antiangiogenesis therapeutics to improve the outcomes. We anticipate that this study will provide guidance for the safe use of nanomedicine in the future.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.