Qingjun Xu, Yang Zhao, Pingping Yuan, Xuan Ma, Sheng Wang, Lin Li, Ping Cheng, Shaoqi Qu
{"title":"结合营养限制和联合治疗的功能化微球平台对抗细菌感染","authors":"Qingjun Xu, Yang Zhao, Pingping Yuan, Xuan Ma, Sheng Wang, Lin Li, Ping Cheng, Shaoqi Qu","doi":"10.1021/acsami.4c16610","DOIUrl":null,"url":null,"abstract":"The escalating prevalence of multidrug-resistant (MDR) bacterial infections has emerged as a critical global health crisis, undermining the efficacy of conventional antibiotic therapies. This pressing challenge necessitates the development of innovative strategies to combat MDR pathogens. Advances in multifunctional drug delivery systems offer promising solutions to reduce or eradicate MDR bacteria. Inspired by the fact that the growth of bacteria requires essential nutrients, core–shell porous poly(lactic-<i>co</i>-glycolic acid) (PLGA) microspheres coated with pH-responsive polydopamine (PDA) were fabricated to improve delivery, resulting in enhanced efficacy through nutrient restriction and combination therapy. The PDA chelates iron ions in the environment, preventing bacteria from absorbing iron and thus suppressing their growth and proliferation. Subsequently, the released antibiotics from the porous PLGA core, rifampicin and polymyxin B, accelerate bacterial eradication by disrupting their inner and outer membrane structures. Such a multifunctional microsphere platform clears 99% <i>Salmonella</i> Typhimurium in 4 h and shows increased efficiency in a lethal intestinal infection model in mice. These findings provide a drug delivery system that integrates bacterial nutrient restriction and antibiotic killing, highlighting the potential of targeting bacterial iron regulation as a strategy for developing new antimicrobial delivery systems to address MDR bacterial infections.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"25 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Functionalized Microsphere Platform Combining Nutrient Restriction and Combination Therapy to Combat Bacterial Infections\",\"authors\":\"Qingjun Xu, Yang Zhao, Pingping Yuan, Xuan Ma, Sheng Wang, Lin Li, Ping Cheng, Shaoqi Qu\",\"doi\":\"10.1021/acsami.4c16610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The escalating prevalence of multidrug-resistant (MDR) bacterial infections has emerged as a critical global health crisis, undermining the efficacy of conventional antibiotic therapies. This pressing challenge necessitates the development of innovative strategies to combat MDR pathogens. Advances in multifunctional drug delivery systems offer promising solutions to reduce or eradicate MDR bacteria. Inspired by the fact that the growth of bacteria requires essential nutrients, core–shell porous poly(lactic-<i>co</i>-glycolic acid) (PLGA) microspheres coated with pH-responsive polydopamine (PDA) were fabricated to improve delivery, resulting in enhanced efficacy through nutrient restriction and combination therapy. The PDA chelates iron ions in the environment, preventing bacteria from absorbing iron and thus suppressing their growth and proliferation. Subsequently, the released antibiotics from the porous PLGA core, rifampicin and polymyxin B, accelerate bacterial eradication by disrupting their inner and outer membrane structures. Such a multifunctional microsphere platform clears 99% <i>Salmonella</i> Typhimurium in 4 h and shows increased efficiency in a lethal intestinal infection model in mice. These findings provide a drug delivery system that integrates bacterial nutrient restriction and antibiotic killing, highlighting the potential of targeting bacterial iron regulation as a strategy for developing new antimicrobial delivery systems to address MDR bacterial infections.\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.4c16610\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c16610","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Functionalized Microsphere Platform Combining Nutrient Restriction and Combination Therapy to Combat Bacterial Infections
The escalating prevalence of multidrug-resistant (MDR) bacterial infections has emerged as a critical global health crisis, undermining the efficacy of conventional antibiotic therapies. This pressing challenge necessitates the development of innovative strategies to combat MDR pathogens. Advances in multifunctional drug delivery systems offer promising solutions to reduce or eradicate MDR bacteria. Inspired by the fact that the growth of bacteria requires essential nutrients, core–shell porous poly(lactic-co-glycolic acid) (PLGA) microspheres coated with pH-responsive polydopamine (PDA) were fabricated to improve delivery, resulting in enhanced efficacy through nutrient restriction and combination therapy. The PDA chelates iron ions in the environment, preventing bacteria from absorbing iron and thus suppressing their growth and proliferation. Subsequently, the released antibiotics from the porous PLGA core, rifampicin and polymyxin B, accelerate bacterial eradication by disrupting their inner and outer membrane structures. Such a multifunctional microsphere platform clears 99% Salmonella Typhimurium in 4 h and shows increased efficiency in a lethal intestinal infection model in mice. These findings provide a drug delivery system that integrates bacterial nutrient restriction and antibiotic killing, highlighting the potential of targeting bacterial iron regulation as a strategy for developing new antimicrobial delivery systems to address MDR bacterial infections.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.