{"title":"复杂网络上具有非单调发病率的SIVS流行模型的动力学分析与最优控制","authors":"Yunsu Zhou , Xianning Liu , Yangjiang Wei","doi":"10.1016/j.cnsns.2024.108531","DOIUrl":null,"url":null,"abstract":"<div><div>With epidemic outbreak, individuals are afraid of being infected, become cautious and adopt behavioral changes to reduce their probability of being infected especially at high infective level. This phenomenon is regarded as the psychological effect in the population, which occurs not only in the susceptible population but also in the vaccinated population. In this paper, considering the psychological effects of two populations, a new SIVS model with nonmonotone incidence rate and imperfect vaccination is constructed on the scale-free network, which is more closely related to the actual spread of epidemics. Based on the model, existence conditions of multiple endemic equilibrium points and two threshold parameters are firstly derived. Next, a necessary and sufficient condition which determines the occurrence of a backward bifurcation at <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>=</mo><mn>1</mn></mrow></math></span> is obtained. Besides, the global asymptotical stability of disease-free equilibrium and the persistence of the disease are proved. By using the monotone iterative technique, the global attractivity of the unique endemic equilibrium is analyzed. And the optimal vaccinated strategy is studied by the method of Pontryagin’s maximum principle. Finally, through numerical simulations, the interaction and impact of the psychological effects, vaccines, and disease outbreaks are revealed.</div></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":"142 ","pages":"Article 108531"},"PeriodicalIF":3.8000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamical analysis and optimal control of an SIVS epidemic model with nonmonotone incidence rate on complex network\",\"authors\":\"Yunsu Zhou , Xianning Liu , Yangjiang Wei\",\"doi\":\"10.1016/j.cnsns.2024.108531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>With epidemic outbreak, individuals are afraid of being infected, become cautious and adopt behavioral changes to reduce their probability of being infected especially at high infective level. This phenomenon is regarded as the psychological effect in the population, which occurs not only in the susceptible population but also in the vaccinated population. In this paper, considering the psychological effects of two populations, a new SIVS model with nonmonotone incidence rate and imperfect vaccination is constructed on the scale-free network, which is more closely related to the actual spread of epidemics. Based on the model, existence conditions of multiple endemic equilibrium points and two threshold parameters are firstly derived. Next, a necessary and sufficient condition which determines the occurrence of a backward bifurcation at <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>=</mo><mn>1</mn></mrow></math></span> is obtained. Besides, the global asymptotical stability of disease-free equilibrium and the persistence of the disease are proved. By using the monotone iterative technique, the global attractivity of the unique endemic equilibrium is analyzed. And the optimal vaccinated strategy is studied by the method of Pontryagin’s maximum principle. Finally, through numerical simulations, the interaction and impact of the psychological effects, vaccines, and disease outbreaks are revealed.</div></div>\",\"PeriodicalId\":50658,\"journal\":{\"name\":\"Communications in Nonlinear Science and Numerical Simulation\",\"volume\":\"142 \",\"pages\":\"Article 108531\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Nonlinear Science and Numerical Simulation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1007570424007160\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Nonlinear Science and Numerical Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1007570424007160","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Dynamical analysis and optimal control of an SIVS epidemic model with nonmonotone incidence rate on complex network
With epidemic outbreak, individuals are afraid of being infected, become cautious and adopt behavioral changes to reduce their probability of being infected especially at high infective level. This phenomenon is regarded as the psychological effect in the population, which occurs not only in the susceptible population but also in the vaccinated population. In this paper, considering the psychological effects of two populations, a new SIVS model with nonmonotone incidence rate and imperfect vaccination is constructed on the scale-free network, which is more closely related to the actual spread of epidemics. Based on the model, existence conditions of multiple endemic equilibrium points and two threshold parameters are firstly derived. Next, a necessary and sufficient condition which determines the occurrence of a backward bifurcation at is obtained. Besides, the global asymptotical stability of disease-free equilibrium and the persistence of the disease are proved. By using the monotone iterative technique, the global attractivity of the unique endemic equilibrium is analyzed. And the optimal vaccinated strategy is studied by the method of Pontryagin’s maximum principle. Finally, through numerical simulations, the interaction and impact of the psychological effects, vaccines, and disease outbreaks are revealed.
期刊介绍:
The journal publishes original research findings on experimental observation, mathematical modeling, theoretical analysis and numerical simulation, for more accurate description, better prediction or novel application, of nonlinear phenomena in science and engineering. It offers a venue for researchers to make rapid exchange of ideas and techniques in nonlinear science and complexity.
The submission of manuscripts with cross-disciplinary approaches in nonlinear science and complexity is particularly encouraged.
Topics of interest:
Nonlinear differential or delay equations, Lie group analysis and asymptotic methods, Discontinuous systems, Fractals, Fractional calculus and dynamics, Nonlinear effects in quantum mechanics, Nonlinear stochastic processes, Experimental nonlinear science, Time-series and signal analysis, Computational methods and simulations in nonlinear science and engineering, Control of dynamical systems, Synchronization, Lyapunov analysis, High-dimensional chaos and turbulence, Chaos in Hamiltonian systems, Integrable systems and solitons, Collective behavior in many-body systems, Biological physics and networks, Nonlinear mechanical systems, Complex systems and complexity.
No length limitation for contributions is set, but only concisely written manuscripts are published. Brief papers are published on the basis of Rapid Communications. Discussions of previously published papers are welcome.