原始混合有限元的MATLAB矢量化实现

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Harish Nagula Mallesham, Kamana Porwal, Jan Valdman, Sanjib Kumar Acharya
{"title":"原始混合有限元的MATLAB矢量化实现","authors":"Harish Nagula Mallesham, Kamana Porwal, Jan Valdman, Sanjib Kumar Acharya","doi":"10.1016/j.camwa.2024.12.017","DOIUrl":null,"url":null,"abstract":"We present efficient MATLAB implementations of the lowest-order primal hybrid finite element method (FEM) for linear second-order elliptic and parabolic problems with mixed boundary conditions in two spatial dimensions. We employ backward Euler and the Crank-Nicolson finite difference scheme for the complete discrete setup of the parabolic problem. All the codes presented are fully vectorized using matrix-wise array operations. Numerical experiments are conducted to show the performance of the software.","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"26 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vectorized implementation of primal hybrid FEM in MATLAB\",\"authors\":\"Harish Nagula Mallesham, Kamana Porwal, Jan Valdman, Sanjib Kumar Acharya\",\"doi\":\"10.1016/j.camwa.2024.12.017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present efficient MATLAB implementations of the lowest-order primal hybrid finite element method (FEM) for linear second-order elliptic and parabolic problems with mixed boundary conditions in two spatial dimensions. We employ backward Euler and the Crank-Nicolson finite difference scheme for the complete discrete setup of the parabolic problem. All the codes presented are fully vectorized using matrix-wise array operations. Numerical experiments are conducted to show the performance of the software.\",\"PeriodicalId\":55218,\"journal\":{\"name\":\"Computers & Mathematics with Applications\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Mathematics with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1016/j.camwa.2024.12.017\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.camwa.2024.12.017","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了二维空间中具有混合边界条件的线性二阶椭圆型和抛物型问题的最低阶原始混合有限元方法的MATLAB实现。对于抛物型问题的完全离散解,我们采用了后向欧拉格式和Crank-Nicolson有限差分格式。所有的代码都是完全矢量化的,使用矩阵数组操作。通过数值实验验证了该软件的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vectorized implementation of primal hybrid FEM in MATLAB
We present efficient MATLAB implementations of the lowest-order primal hybrid finite element method (FEM) for linear second-order elliptic and parabolic problems with mixed boundary conditions in two spatial dimensions. We employ backward Euler and the Crank-Nicolson finite difference scheme for the complete discrete setup of the parabolic problem. All the codes presented are fully vectorized using matrix-wise array operations. Numerical experiments are conducted to show the performance of the software.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信