{"title":"稀土活化玻璃纳米晶体微腔中鲁棒低阈值全彩上转换激光","authors":"Zhigang Gao, Lugui Cui, Yushi Chu, Luyue Niu, Lehan Wang, Rui Zhao, Yulong Yang, Xiaofeng Liu, Jing Ren, Guoping Dong","doi":"10.1038/s41377-024-01671-3","DOIUrl":null,"url":null,"abstract":"<p>Visible light microlasers are essential building blocks for integrated photonics. However, achieving low-threshold (μW), continuous-wave (CW) visible light lasing at room temperature (RT) has been a challenge because of the formidable requirement of population inversion at short wavelengths. Rare-earth (RE)-activated microcavities, featuring high-quality factor (<i>Q</i>) and small mode volume of whispering gallery modes, offer a great opportunity for achieving infrared-to-visible upconversion (UC) lasing. Here, we report that batch-produced nano-glass composite (GC) microspheres incorporating RE-doped fluoride nanocrystals show efficient UC emissions. These multi-phase composite microspheres exhibit a high <i>Q</i> value (≥10<sup>5</sup>), comparable to that of conventional multi-component glass microspheres. The UC lasing with pure red, green, and blue (RGB) emissions are demonstrated based on a highly efficient tapered fiber-microsphere system. More importantly, the GC microspheres manifest reduced (by 45%) lasing threshold and enhanced (more than four times) slope efficiency. These characteristics, together with excellent long-term stability, suggest a promising solution to achieving highly robust, stand-alone, low-threshold, and versatile UC microlasers.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"103 1","pages":""},"PeriodicalIF":20.6000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust low threshold full-color upconversion lasing in rare-earth activated nanocrystal-in-glass microcavity\",\"authors\":\"Zhigang Gao, Lugui Cui, Yushi Chu, Luyue Niu, Lehan Wang, Rui Zhao, Yulong Yang, Xiaofeng Liu, Jing Ren, Guoping Dong\",\"doi\":\"10.1038/s41377-024-01671-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Visible light microlasers are essential building blocks for integrated photonics. However, achieving low-threshold (μW), continuous-wave (CW) visible light lasing at room temperature (RT) has been a challenge because of the formidable requirement of population inversion at short wavelengths. Rare-earth (RE)-activated microcavities, featuring high-quality factor (<i>Q</i>) and small mode volume of whispering gallery modes, offer a great opportunity for achieving infrared-to-visible upconversion (UC) lasing. Here, we report that batch-produced nano-glass composite (GC) microspheres incorporating RE-doped fluoride nanocrystals show efficient UC emissions. These multi-phase composite microspheres exhibit a high <i>Q</i> value (≥10<sup>5</sup>), comparable to that of conventional multi-component glass microspheres. The UC lasing with pure red, green, and blue (RGB) emissions are demonstrated based on a highly efficient tapered fiber-microsphere system. More importantly, the GC microspheres manifest reduced (by 45%) lasing threshold and enhanced (more than four times) slope efficiency. These characteristics, together with excellent long-term stability, suggest a promising solution to achieving highly robust, stand-alone, low-threshold, and versatile UC microlasers.</p>\",\"PeriodicalId\":18069,\"journal\":{\"name\":\"Light-Science & Applications\",\"volume\":\"103 1\",\"pages\":\"\"},\"PeriodicalIF\":20.6000,\"publicationDate\":\"2025-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Light-Science & Applications\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.1038/s41377-024-01671-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-024-01671-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
Visible light microlasers are essential building blocks for integrated photonics. However, achieving low-threshold (μW), continuous-wave (CW) visible light lasing at room temperature (RT) has been a challenge because of the formidable requirement of population inversion at short wavelengths. Rare-earth (RE)-activated microcavities, featuring high-quality factor (Q) and small mode volume of whispering gallery modes, offer a great opportunity for achieving infrared-to-visible upconversion (UC) lasing. Here, we report that batch-produced nano-glass composite (GC) microspheres incorporating RE-doped fluoride nanocrystals show efficient UC emissions. These multi-phase composite microspheres exhibit a high Q value (≥105), comparable to that of conventional multi-component glass microspheres. The UC lasing with pure red, green, and blue (RGB) emissions are demonstrated based on a highly efficient tapered fiber-microsphere system. More importantly, the GC microspheres manifest reduced (by 45%) lasing threshold and enhanced (more than four times) slope efficiency. These characteristics, together with excellent long-term stability, suggest a promising solution to achieving highly robust, stand-alone, low-threshold, and versatile UC microlasers.